
Enabling Additional Parallelism in Asynchronous1

JavaScript Applications2

Ellen Arteca !3

Northeastern University, Boston, USA4

Frank Tip !5

Northeastern University, Boston, USA6

Max Schäfer !7

GitHub, Oxford, UK8

Abstract9

JavaScript is a single-threaded programming language, so asynchronous programming is practiced10

out of necessity to ensure that applications remain responsive in the presence of user input or11

interactions with file systems and networks. However, many JavaScript applications execute in12

environments that do exhibit concurrency by, e.g., interacting with multiple or concurrent servers, or13

by using file systems managed by operating systems that support concurrent I/O. In this paper, we14

demonstrate that JavaScript programmers often schedule asynchronous I/O operations suboptimally,15

and that reordering such operations may yield significant performance benefits. Concretely, we16

define a static side-effect analysis that can be used to determine how asynchronous I/O operations17

can be refactored so that asynchronous I/O-related requests are made as early as possible, and18

so that the results of these requests are awaited as late as possible. While our static analysis is19

potentially unsound, we have not encountered any situations where it suggested reorderings that20

change program behavior. We evaluate the refactoring on 20 applications that perform file- or21

network-related I/O. For these applications, we observe average speedups ranging between 0.99%22

and 53.6% for the tests that execute refactored code (8.1% on average).23

2012 ACM Subject Classification Software and its engineering → Automated static analysis; Soft-24

ware and its engineering → Concurrent programming structures; Software and its engineering →25

Software performance26

Keywords and phrases asynchronous programming, refactoring, side-effect analysis, performance27

optimization, static analysis, JavaScript28

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.829

Funding E. Arteca and F. Tip were supported in part by the National Science Foundation grants30

CCF-1715153 and CCF-1907727. E. Arteca was also supported in part by the Natural Sciences and31

Engineering Research Council of Canada.32

1 Introduction33

In JavaScript, asynchronous programming is practiced out of necessity: JavaScript is a34

single-threaded language and relying on asynchronously invoked functions/callbacks is the35

only way for applications to remain responsive in the presence of user input and file system36

or network-related I/O. Originally, JavaScript accommodated asynchrony using event-driven37

programming, by organizing the program as a collection of event handlers that are invoked38

from a main event loop when their associated event is emitted. However, event-driven39

programs suffer from event races [27] and other types of errors [21] and lack adequate support40

for error handling.41

In response to these problems, the JavaScript community adopted promises [10, Sec-42

tion 25.6], which enable programmers to create chains of asynchronous computations with43

proper error handling. However, promises are burdened by a complex syntax where each44

© Ellen Arteca, Frank Tip, and Max Schäfer;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 8; pp. 8:1–8:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arteca.e@northeastern.edu
mailto:f.tip@northeastern.edu
mailto:max-schaefer@github.com
https://doi.org/10.4230/LIPIcs.ECOOP.2021.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Enabling Additional Parallelism in Asynchronous JavaScript Applications

element in a promise chain requires a call to a higher-order function. To reduce this burden,45

the async/await feature [10, Section 6.2.3.1] was introduced in the ECMAScript 8 version of46

JavaScript, as syntactic sugar for common usage patterns of promises. A function designated47

as async can await asynchronous computations (either calls to other async functions or48

promises), enabling asynchronous programming with minimal syntactic overhead.49

The async/await feature has quickly become widely adopted, and many libraries have50

adopted promise-based APIs that enable the use of async/await in user code. However,51

many programmers are still unfamiliar with promises and async/await and are insufficiently52

aware of how careless use of these features may negatively impact performance. In particular,53

programmers often do not think carefully enough about when to create promises that are54

associated with initiating asynchronous I/O operations and when to await the resolution of55

those promises and trigger subsequent computations.56

As JavaScript is single-threaded, it does not support multi-threading/concurrency at the57

language level. However, the placement of promise-creation operations and the awaiting of58

results of asynchronous operations can have significant performance implications because59

many JavaScript applications execute in environments that do feature concurrency. For60

example, a JavaScript application can interact with servers, file systems, or databases that61

can execute multiple operations concurrently. Therefore, in general, it is desirable to trigger62

asynchronous activities as early as possible and await their results as late as possible, so63

that a program can perform useful computations while asynchronous I/O requests are being64

processed in the environment.65

In this paper, we use static interprocedural side-effect analysis [4] to detect situations66

where oversynchronization occurs in JavaScript applications. For a given statement s, our67

analysis computes sets MOD(s) and REF(s) of access paths [22] that represent sets of memory68

locations modified and referenced by s, respectively. We use this analysis to suggest how69

await-expressions of the form await eio can be refactored, where eio is an expression that70

creates a promise that is settled when an asynchronous I/O operation completes. Here, the71

idea is to “split” such await-expressions so that: (i) the promise creation is moved to the72

earliest possible location within the same scope and (ii) the awaiting of the result of the73

promise is moved to the latest possible location within the same scope. Like most static74

analyses for JavaScript, the side-effect analysis is unsound, so the programmer needs to75

ensure that program behavior is preserved, by reviewing the suggested refactorings carefully76

and running the application’s tests.77

We implemented the static analysis in CodeQL [2, 12], and incorporated it into a tool78

called ReSynchronizer1 that automatically refactors I/O-related await-expressions. In an79

experimental evaluation, we applied ReSynchronizer to 20 open-source Node.js applications80

that perform asynchronous file-system I/O and asynchronous network I/O. Our findings81

indicate that, on these subject applications, our approach yields speedups ranging between82

0.99% and 53.6% when running tests that execute refactored code (8.1% on average). We83

detected no situations where unsoundness in the static analysis resulted in broken tests.84

In summary, the contributions of this paper are as follows:85

The design of a static side-effect analysis for determining MOD and REF sets of access86

paths, and the use of this analysis to suggest how I/O-related await-expressions can be87

refactored to improve performance,88

Implementation of this analysis in a tool called ReSynchronizer , and89

1 The source code of the tool and all of our data is available on GitHub

https://github.com/emarteca/Resynchronizer

E. Arteca, F. Tip, and M. Schäfer 8:3

An evaluation of ReSynchronizer on 20 open-source projects, demonstrating that our90

approach can produce significant speedups and scales to real-world applications.91

The remainder of this paper is organized as follows. Section 2 reviews JavaScript’s promises92

and async/await features. In Section 3, a real-world example is presented that illustrates93

how reordering await-expressions may yield performance benefits. Section 4 presents the94

side-effect analysis that serves as the foundation for our approach. Section 5 presents an95

evaluation of our approach on open-source JavaScript projects that use async/await. Related96

work is discussed in Section 6. Section 8 concludes and provides directions for future work.97

2 Review of promises and async/await98

This section presents a brief review of JavaScript’s promises [10, Section 25.6] and the99

async/await feature [10, Section 6.2.3.1] for asynchronous programming. Readers already100

familiar with these concepts may skip this section.101

A promise represents the result of an asynchronous computation, and is in one of three102

states. Upon creation, a promise is in the pending state, from where it may transition to103

the fulfilled state, if the asynchronous computation completes successfully, or to the rejected104

state, if an error occurs. A promise is settled if it is in the fulfilled or rejected state. The105

state of a promise can change only once, i.e., once a promise is settled, its state will never106

change again.107

Promises are created by invoking the Promise constructor, which expects as an argument108

a function that itself expects two arguments, resolve and reject. Here, resolve and reject109

are functions for fulfilling or rejecting a promise with a given value, respectively. For example,110

the following code:111

112
1 const p = new Promise (function (resolve , reject) {113

2 setTimeout (function () { resolve (17); }, 1000);114

3 });115116

creates a promise that is fulfilled with the value 17 after 1000 milliseconds.117

Once a promise has been created, the then method can be used to register reactions on it,118

i.e., functions that are invoked asynchronously from the main event loop when the promise is119

fulfilled or rejected. Consider extending the previous example as follows:120

121
4 p.then(function f(v) { console .log(v); return v+1; });122123

In this case, when the promise assigned to p is fulfilled, the value that it was fulfilled with124

will be passed as an argument to the resolve-reaction f, causing it to print the value 17 and125

return the value 18.126

The then function creates a promise, which is resolved with the value returned by the127

reaction. This enables the creation of a promise chain of asynchronous computations. For128

instance, extending the previous example with:129

130
5 p.then(function (x) { return x+1; })131

6 .then(function (y) { return y+2; })132

7 .then(function (z) { console .log(z); })133134

results in the value 20 being printed.135

The examples given so far only specify fulfill-reactions, but in general, care must be taken136

to handle failures. In particular, the promise implicitly created by calling then is rejected if137

an exception occurs during the execution of the reaction. To this end, the catch method can138

be used to register reject-reactions that are to be executed when a promise is rejected. The139

catch method is commonly used at the end of a promise chain. For example:140

ECOOP 2021

8:4 Enabling Additional Parallelism in Asynchronous JavaScript Applications

141
8 p.then(function (x) { return x+1; })142

9 .then(function (y) { throw new Error (); })143

10 .then(function (z) { console .log(z); })144

11 .catch (function (err) { console .log(’error!’); })145146

results in ’error!’ being printed.147

Recently, several popular libraries for performing I/O-related operations have adopted148

promise-based APIs. For example, fs-extra is a popular library that provides various file149

utilities, including a method copy for copying files. The copy function returns a promise that150

is fulfilled when the file-copy operation completes successfully, and that is rejected if an I/O151

error occurs, enabling programmers to write code such as:2152

153
12 const fs = require (’fs -extra ’)154

13 fs.copy(’/tmp/ myfile ’, ’/tmp/ mynewfile ’)155

14 .then(function () { console .log(’success !’); })156

15 .catch (function (err) { console .error(err); })157158

JavaScript’s async/await feature builds on promises. A function can be designated as159

async to indicate that it performs an asynchronous computation. An async function f160

returns a promise: if f returns a value, then its associated promise is fulfilled with that161

value, and if an exception is thrown during execution of f , its associated promise is rejected162

with the thrown value. The await keyword may be used inside the body of async functions,163

to accommodate situations where the function relies on other asynchronous computations.164

Given an expression e that evaluates to a promise, the execution of an expression await e165

that occurs in the body of an async function f will cause execution of f to be suspended,166

and control flow will revert to the main event loop. Later, when the promise is fulfilled with167

a value v, execution of f will resume, and the await-expression will evaluate to v. In the168

case where the promise that e evaluates to is rejected with a value w, execution will resume169

and the evaluation of the await-expression will throw w as an exception that can be handled170

using the standard try/catch mechanism. Below, we show a variant of the previous example171

rewritten to use async/await.172

173
16 async function copyFiles () {174

17 try {175

18 await fs.copy(’/tmp/ myfile ’, ’/tmp/ mynewfile ’)176

19 console .log(’success !’)177

20 } catch (err) {178

21 console .error(err)179

22 }180

23 }181182

As is clear from this example, the use of async/await results in code that is more easily183

readable. Here, execution of copyFiles will be suspended when the await-expression on184

line 18 is encountered. Later, when the file-copy operation has completed, execution will185

resume. If the operation completes successfully, line 19 will execute and a message ’success!’186

is printed. Otherwise, an exception is thrown, causing the handler on line 20 to execute.187

As a final comment, we remark on the fact that it is straightforward to convert an existing188

event-based API into an equivalent promise-based API, by creating a promise that is settled189

when an event arrives. Various utility libraries exist for such “promisification” of event-driven190

APIs, e.g., util.promisify [14] and universalify [33].191

2 Example adapted from https://www.npmjs.com/package/fs-extra.

https://www.npmjs.com/package/fs-extra

E. Arteca, F. Tip, and M. Schäfer 8:5

24 export async function getStatus (repository) {
25 const stdout = await gitMergeTree (repository)
26 const parsed = parsePorcelainStatus (stdout) A
27 const entries = parsed . filter (isStatusEntry) B
28
29 const hasMergeHead = await fs. pathExists (getMergeHead (repository))
30 const hasConflicts = entries .some(isConflict) C
31
32 const state = await getRebaseInternalState (repository)
33
34 const conflictDetails = await getConflictDetails (repository ,
35 hasMergeHead , hasConflicts , state)
36
37 buildStatusMap (conflictDetails) G
38 }

(a)

39 async function getRebaseInternalState (repository) {
40 let targetBranch = await fs. readFile (getHeadName (repository))
41 if (targetBranch . startsWith (’refs/heads/’))
42 targetBranch = targetBranch . substr (11). trim () D
43
44 let baseBranchTip = await fs. readFile (getOnto (repository))
45 baseBranchTip = baseBranchTip .trim () E
46
47 return { targetBranch , baseBranchTip } F
48 }

(b)

Figure 1 Example.

3 Motivating Example192

We now present a motivating example that illustrates the performance benefits that may193

result from reordering await-expressions. The example was taken from Kactus3, a git-based194

version control tool for design sketches. Figure 1(a) shows a function getStatus that is195

defined in the file status.ts4. As an async function, getStatus may depend on the values196

computed by other async functions, by awaiting such values in await-expressions. The code197

shown in Figure 1(a) contains four such await-expressions, on lines 25, 29, 32, and 34, which198

we now consider in some detail:199

The await-expression on line 25 invokes an async function gitMergeTree (omitted for200

brevity) that relies on the dugite and child_process libraries to execute a git merge-tree201

command in a separate process.202

The await-expression on line 29 calls an async function pathExists from the fs-extra203

package mentioned above, to check if a file MERGE_HEAD exists in the .git directory.204

pathExists is implemented in terms of the function access from the built-in fs package205

provided by the Node.js platform, which in turn triggers the execution of an OS-level206

file-read operation.207

The await-expression on line 32 calls an async function getRebaseInternalState, of which208

we show some relevant fragments in Figure 1(b). Note in particular that two asynchronous209

3 See https://kactus.io/.
4 Some details not pertinent to the program transformation under consideration have been elided here.

The complete source code can be found at https://github.com/kactus-io/kactus.

ECOOP 2021

https://kactus.io/
https://github.com/kactus-io/kactus

8:6 Enabling Additional Parallelism in Asynchronous JavaScript Applications

fs.readFile()

await fs.readFile()

await getConflictDetails()

getConflictDetails()

fs.readFile()

await getRebaseInternalState()

getRebaseInternalState()

fs.pathExists()

await gitMergeTree()

gitMergeTree()

getStatus getRebaseInternalState

time

JS libraries and
runtime

A
B

G

asynchronous call

asynchronous return (callback)

1

1
2

2
3

3

C
await fs.pathExists()

D

await fs.readFile()
E
F

…

…

Figure 2 Visualization of the execution of getStatus.

file-read operations are performed on lines 40 and 44, using the readFile function from210

fs-extra. Each of these calls causes the execution of an OS-level file-read operation.211

The await-expression on line 34 invokes an async utility function getConflictDetails212

(omitted for brevity) to gather information about files that have merge conflicts.213

Figure 2 shows a UML Sequence Diagram5 that visualizes the flow of control during the214

execution of getStatus. In this diagram, labels A – G inside timelines indicate when code215

fragments labeled similarly in Figure 1 execute. Furthermore, labels 1 – 3 indicate when216

file I/O operations associated with the call to fs.pathExists on line 29 and with the two217

calls to fs.readFile in function getRebaseInternalState execute.218

The leftmost timeline in the diagram depicts the execution of code fragments in the219

getStatus function itself. The middle timeline depicts the execution of function220

getRebaseInternalState. The timeline on the right, labeled ‘JS libraries and runtime’ visual-221

izes the execution of functions in JavaScript libraries such as fs-extra and other libraries222

that the application relies on such as universalify [33], graceful-fs [30], and libraries such223

as the fs file-system package that are included with the JS runtime.224

Taking a closer look at the diagram, we can observe that the code fragments A and B225

will run before I/O operation 1 is initiated. Then, after I/O operation 1 has completed,226

code fragment C is evaluated. Next, when getRebaseInternalState is invoked, I/O operation227

2 is initiated. After it has completed, code fragment D executes, which is followed in turn228

by I/O operation 3 . When that operation completes, code fragments E and F execute,229

and finally code fragment G executes. Crucially, the use of await on lines 29, 32, 40, and230

44 ensures that each file I/O operation must complete before execution can proceed. As231

5 To prevent clutter, the diagram only shows asynchronous calls and returns and elides details that are
not relevant to the example under consideration.

E. Arteca, F. Tip, and M. Schäfer 8:7

a result, the file I/O operations 1 – 3 execute in a strictly sequential order, where each232

operation must complete before the next one is dispatched.233

However, most JavaScript runtimes are capable of processing multiple asynchronous I/O234

requests concurrently. In this paper, we demonstrate that it is often possible to refactor235

JavaScript code in a way that enables for multiple I/O requests to be processed concurrently236

with the main program. The refactoring that we envision targets expressions of the form await237

eio, where eio is an expression that creates a promise that is settled when an asynchronous238

I/O operation completes. The expressions await fs.pathExists(getMergeHead(repository))239

on line 29 and await getRebaseInternalState (repository) on line 32 are examples of such240

expressions, as are the await-expressions on lines 40 and 44 in Figure 1(b).241

Conceptually, the refactoring involves splitting an expression await eio occurring in an242

async function f into two parts:243

1. a local variable declaration var t = eio that starts the asynchronous I/O operation and244

that is placed as early as possible in the control-flow graph of f , and245

2. an expression await t where the result of the asynchronous I/O operation is awaited and246

that is placed as late as possible in the control-flow graph of f .247

We will make the notions “as early as possible” and “as late as possible” more precise in248

Section 4, but intuitively, the idea is that we want to move the expression eio before any249

statement that precedes it—provided that this does not change the values computed or250

side-effects created at any program point. Likewise, we want to move the expression await t251

after any statement that follows it provided that this does not alter the values computed or252

side-effects created at any program point. Section 4 will present a static data flow analysis253

for determining when statements can be reordered.254

Figure 3(a) shows how the getStatus function is refactored by our technique. As can be255

seen in the figure, the await-expression that occurred on line 29 in Figure 1(a) is split into256

the declaration of a variable T1 on line 53 and an await-expression on line 60 in Figure 3(a).257

Likewise, the await-expression that occurred on line 32 in Figure 1(a) is split into the258

declaration of a variable T2 on line 54 and an await-expression on line 59 in Figure 3(a).259

The await-expression on line 25 cannot be split because it relies on process.spawn to260

execute a git merge-tree command in a separate process, and our analysis conservatively261

assumes that statements that spawn new processes have side-effects and thus cannot be262

reordered (this is discussed in detail in Section 4.4). Furthermore, the await-expression on263

line 34 was not reordered because it references the variable state defined on the previous264

line, and it defines a variable conflictDetails that is referenced in the subsequent statement,265

so any reordering might cause different values to be computed at those program points.266

The two await-expressions in Figure 1(b) can also be split, and the resulting refactored267

code is shown in Figure 3(b).268

Figure 4 shows a UML Sequence diagram that visualizes the execution of the refactored269

getStatus method. As can be seen in the figure, the I/O operation labeled 1 is now initiated270

after code fragment A has been executed but before code fragment B executes. However,271

since the result of this I/O operation is not needed until after code fragment C has executed,272

this I/O operation can now execute concurrently with I/O operations 2 and 3 . Additional273

potential for concurrency is enabled by starting I/O operation 3 before awaiting the result274

of I/O operation 2 . Note that, as a result of splitting await-expressions and reordering275

statements, the labeled code fragments now execute in a slightly different order: A , D , E ,276

F , B , C , G . Our static analysis, defined in Section 4 inspects the MOD and REF sets of277

memory locations modified and referenced by statements to determine when reordering is278

safe. The analysis is unsound, and may potentially suggest reorderings that change program279

ECOOP 2021

8:8 Enabling Additional Parallelism in Asynchronous JavaScript Applications

49 export async function getStatus (repository) {
50 const stdout = await gitMergeTree (repository)
51 const parsed = parsePorcelainStatus (stdout) A
52
53 let T1 = fs. pathExists (getMergeHead (repository))
54 let T2 = getRebaseInternalState (repository)
55
56 const entries = parsed . filter (isStatusEntry) B
57 const hasConflicts = entries .some(isConflict) C
58
59 const state = await T2
60 const hasMergeHead = await T1
61 const conflictDetails = await getConflictDetails (repository ,
62 hasMergeHead , hasConflicts , state)
63
64 buildStatusMap (conflictDetails) G
65 }

(a)

66 async function getRebaseInternalState (repository) {
67 let T3 = fs. readFile (getHeadName (repository))
68 let T4 = fs. readFile (getOnto (repository))
69 let targetBranch = await T3
70 if (targetBranch . startsWith (’refs/heads/’))
71 targetBranch = targetBranch . substr (11). trim () D
72
73 let baseBranchTip = await T4
74 baseBranchTip = baseBranchTip .trim () E
75
76 return { targetBranch , baseBranchTip } F
77 }

(b)

Figure 3 Example, reordered.

var T4 = fs.readFile()
await T3

await getConflictDetails()

getConflictDetails()

var T3 = fs.readFile()var T2 = getRebaseInternalState()

var T1 = fs.pathExists()

await gitMergeTree()

gitMergeTree()

getStatus getRebaseInternalState

time

JS libraries and
runtime

A

G

1

1

3

3

B
C

D

E
F

…

…

await T4

await T2

await T1

2

2

Figure 4 Visualization of the execution of getStatus after reordering.

E. Arteca, F. Tip, and M. Schäfer 8:9

behavior, so programmers need to review the suggested changes carefully and run their tests280

to ensure that behavior is preserved. In practice, however, we have not encountered any281

cases where invalid reorderings were suggested, as we will discuss in Section 5.3 .282

At this point, the reader may wonder whether the additional concurrency enabled by the283

suggested transformation results in performance improvements. For the Kactus project from284

which the example was taken, a total of 72 I/O-related await-expressions were reordered by285

our technique, including the ones discussed above. Of the 799 tests associated with Kactus,286

172 execute at least one reordered await-expression. For these impacted tests, we observed287

an average speedup of 7.2%. We discuss our experimental results in detail, in Section 5.288

4 Approach289

This section presents a static analysis for determining how await-expressions can be reordered290

to reduce over-synchronization. The analysis determines whether reordering adjacent state-291

ments may impact program behavior by determining the side-effects of each statement. Here,292

the side-effects of statements are defined in terms of MOD and REF sets [4] of access paths293

[22]. Below, we will define these concepts before introducing predicates that specify when294

statements can be reordered.295

4.1 Access paths296

An access path represents a set of memory locations referred to by an expression in a program.297

The access path representation that we use is based on the work by Mezzetti et al. [22]:298

starting from a root, an access path records a sequence of property reads, method calls and299

function parameters that need to be traversed to arrive at the designated locations. It is300

often also useful to view access paths as representing a set of values, namely those values that301

are stored in these locations at runtime. Access paths a conform to the following grammar:302

a ::= root a root of an access path
| a.f a property f of an object represented by a

| a() values returned from a function represented by a

| a(i) the ith parameter of a function represented by a

| anew() instances of a class represented by a

303

Mezzetti et al. developed access paths to abstractly represent objects originating from a304

particular API. As such, their root was always of the form require(m)6. We additionally305

allow variables as roots, including both global variables and local variables, with the latter306

also covering function parameters including the implicit receiver parameter this.307

Example 4.1: We give a few examples of access paths:308

The local variable targetBranch declared on line 40 in Figure 1 is represented by the309

access path targetBranch.310

The argument’refs/heads/’ in the method call targetBranch.startsWith(’refs/heads/’)311

on line 41 is represented by the access path targetBranch.startsWith(1).312

The property-access expression fs.pathExists on line 29 is represented by the access path313

require(fs-extra).pathExists.314

6 This represents an import of package m. For simplicity, we use this same notation to represent packages
imported using require or import.

ECOOP 2021

8:10 Enabling Additional Parallelism in Asynchronous JavaScript Applications

Note that access paths are not canonical: due to aliasing, it is possible for multiple access315

paths to represent the same memory locations. This may give rise to unsoundness in the316

analysis, as will be discussed in Section 4.10.317

4.2 MOD and REF318

Intuitively, for a given statement or expression s, MOD(s) is a set of access paths representing319

locations modified by s and REF(s) is a set of access paths representing locations referenced by320

s. If s is a compound statement or expression such as a block, if-statement, or while-statement,321

MOD(s) and REF(s) include all access paths modified/referenced in any component of s,322

respectively. Furthermore, if s includes a function call e.f(· · ·), MOD(s) and REF(s) include323

all access paths modified/referenced in any statement in any function transitively invoked324

from this call site7.325

When a statement s contains an assignment to an access path a, the set MOD(s) contains326

a and all access paths that are rooted in a. However, note that we limit the set of access327

paths in MOD(s) to those that are explicitly referenced in the program. To understand328

why this must be the case, consider a scenario where a is a variable containing a string.329

Such a variable has all properties that are defined on strings8. As one particular example,330

consider the toString function defined on strings. Since a.toString() is rooted in a, MOD(s)331

should include a.toString(). The result of a.toString() is also a string, which means that332

a.toString().toString() is another valid access path rooted in a, and should be included in333

MOD(s). This could be repeated ad infinitum, and is only one possible example of such an334

infinite recursive process. So, to ensure that MOD(s) and REF(s) are always finite sets, they335

only include access paths that actually occur in the program.336

Note that, in JavaScript, it is also possible to access properties dynamically, with337

expressions of the form e[p], where p is a value computed at run time. In such cases, our338

analysis cannot statically determine which of e’s properties is specified by p, and so we339

conservatively assume that all properties of e are accessed (i.e., all access paths rooted in e).340

Example 4.2: Consider the assignment statement on line 40 in Figure 1.341

let targetBranch = await fs.readFile(getHeadName(repository))342

Since we are assigning to targetBranch, this statement modifies targetBranch and all343

access paths rooted in targetBranch. From a quick glance at the code, we can see that two344

properties of targetBranch are accessed (startsWith and substr) and called as methods, and345

the trim method is called on the result of calling substr (and none of these has any further346

properties accessed). The assignment also contains a call to getHeadName – the function body347

is elided for brevity, but suffice it to say that getHeadName does not modify its repository348

argument or any global variables. Taking these considerations into account, the following349

MOD set is computed for the statement on line 40:350

{ targetBranch, targetBranch.startsWith, targetBranch.startsWith(), targetBranch.substr,

targetBranch.substr(), targetBranch.substr().trim, targetBranch.substr().trim() }
351

352

The REF set includes all access paths referenced in the assignment, which includes the353

call to fs.readFile that is represented by the access path require(fs-extra).readFile(),354

the function getHeadName, and the variable repository. In the implementation of function355

7 Note that for brevity, when describing modification/reference of the locations abstractly represented by
an access path, we refer to it as modification/reference of the access path itself.

8 See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

E. Arteca, F. Tip, and M. Schäfer 8:11

getHeadName, there is a call to fs.pathExists, another to Path.join, and an access to the356

path property of the repository object. Therefore, the REF set for the statement is:357

{ require(fs-extra), require(Path), require(fs-extra).readFile, require(fs-extra).readFile(),
require(fs-extra).pathExists, require(fs-extra).pathExists(), require(Path).join,

require(Path).join(), repository, repository.path }

358

359

Note that, for a given statement s, MOD(s) and REF(s) do not include access paths360

rooted in local variables, parameters or this parameters in scopes disjoint from the scope of s.361

For example, for the statement on line 32 where we see a call to getRebaseInternalState, the362

MOD set does not include an access path targetBranch for the local variable targetBranch363

modified in that function because it has no effect on the calling statement.364

4.3 Determining whether statements are independent365

In order to determine whether two adjacent statements s1 and s2 can be reordered, we need366

to determine whether doing so might change the values computed at either statement. We367

consider statements s1 and s2 data-independent if all of the following criteria are satisfied:368

1. MOD(s1) ∩ MOD(s2) = ∅369

2. MOD(s1) ∩ REF(s2) = ∅370

3. REF(s1) ∩ MOD(s2) = ∅371

If s1 and s2 are not data-independent, then we will say that they are data-conflicting.372

Example 4.3:373

We discussed the MOD set for the statement at line 40 in Figure 1 in Example 4.2.374

Similarly, the statement on line 44 is an assignment to variable baseBranchTip, whose MOD375

set consists of {baseBranchTip, baseBranchTip.trim, baseBranchTip.trim()}. Since neither376

of these statements is modifying data that the other is modifying or referencing, these377

statements are data-independent. Note that they do have an overlap in the REF sets: both378

statements include calls to fs.readFile, and access the variable repository. However, since379

these accesses are read-only, the order in which they execute does not need to be preserved.380

Indeed, in Figure 3, we see that, in the reordered code, the await for the targetBranch381

assignment is moved after the baseBranchTip assignment.382

Since the statement on line 44 has baseBranchTip in its MOD set, it data-conflicts with383

the statement on line 45 which uses the value of variable baseBranchTip, indicating that384

these statements cannot be reordered. Indeed, in Figure 3, we see that the await for the385

assignment of baseBranchTip remains before the reference to baseBranchTip on line 74.386

Note that, since access paths are not canonical, data independence is not, strictly speaking,387

a sound criterion for reorderability: if two statements modify the same location under different388

access paths, we will consider them to be data independent, but reordering them may be389

unsafe. This issue and other factors that may impact soundness are discussed in Section 4.10.390

4.4 Environmental side effects391

So far, we have only considered side-effects consisting of referencing and modifying locations392

through variables and object properties. However, statements may also have side-effects393

beyond the state of the program itself, such as modifications to file systems, or the environment394

in which the program is being executed. Our approach to handling such side-effects is to395

model them in terms of MOD and REF sets for (pseudo-)variables. We distinguish two types396

of special side effects: global and environment-specific, which we discuss below.397

ECOOP 2021

8:12 Enabling Additional Parallelism in Asynchronous JavaScript Applications

Environment Function names

__FILE_SYSTEM__ fs.write* (i.e. fs.write, fs.writeSync, writeFile, etc)
__FILE_SYSTEM__ fs.append* (i.e. fs.append, appendFile, etc)
__FILE_SYSTEM__ fs.unlink, fs.remove, fs.rename, fs.move, or fs.copy
__FILE_SYSTEM__ fs.mkdir or fs.rmdir or fs.rimraf
__FILE_SYSTEM__ fs.output* (i.e. fs.output, fs.outputFileSync, etc)
__FILE_SYSTEM__ process.chdir
__NETWORK__ network.start or network.stop or network.launch
__NETWORK__ network.write, or network.load (a write to the contents of a page)
__NETWORK__ network.goto (for changing pages in puppeteer; it is analagous to chdir for fs)

Table 1 Functions with environment-specific MOD side-effects

Global environmental side-effects.398

We say that a statement s has a global side-effect if it could affect any of the data in the399

program or its environment. In such cases, our analysis infers that MOD(s) = ⊤ and400

REF(s) = ⊤, where ⊤ is the set containing all access paths computed for the program.401

Currently, our analysis flags the following functions as having global side-effects: eval, exec,402

spawn, fork, run, and setTimeout. All but the last of these functions may execute arbitrary403

code and setTimeout is often used to explicitly force a specific execution order9.404

Environment-specific side-effects.405

We say a statement has an environment-specific side-effect if it can affect a specific aspect406

of the program’s run-time environment, such as the file system or network. Environment-407

specific side-effects are modeled in terms of MOD and REF sets for pseudo-variables that408

are introduced for the aspect of the environment under consideration.409

The experiments reported on in this paper focus on applications that access the file system410

or a network and we model these environments using pseudo-variables __FILE_SYSTEM__ and411

__NETWORK__ respectively.412

Our current implementation flags a statement as having an environment-specific MOD413

side-effect if it consists of a call to any of the functions listed in Table 1. For each of these414

operations, the MOD sets will include the corresponding environment pseudo-variable. For415

example, the first row reads as follows: a statement including any function starting with416

write (i.e. write, writeSync, writeFile, etc.) that originates from a file system-dependent417

package will include the pseudo-variable __FILE_SYSTEM__ in its MOD set.418

Any other operations that reference the environments will have their REF set include the419

corresponding pseudo-variable (e.g., fs.readFile references __FILE_SYSTEM__, and express.get420

references __NETWORK__)10. As a result, no statements that reference an environment can be421

reordered around a call that may modify that environment. For example, no file read will422

ever be reordered around a file write, since the file read statements have __FILE_SYSTEM__ in423

the REF set and the file write statements have __FILE_SYSTEM__ in the MOD set11. However,424

9 While conducting our experiments, we ran into cases where reordering awaits around a call to setTimeout
caused changes in program behavior because the execution order was modified.

10 This full list is included in a table analogous to Table 1 in the supplementary materials.
11 We have taken this conservative approach because, in many cases, it is not possible to determine

precisely which files are being accessed because names of accessed files are specified with string values

E. Arteca, F. Tip, and M. Schäfer 8:13

Input: s statement and a access path
Result: True if s modifies a, False otherwise

1: predicate MOD(s, a)
2: // (i) base case: direct modification of a
3: (s has environmental side-effect a ∨ s declares or assigns to a)
4: ∨ // recursive cases...
5: // (ii) check if there’s a statement nested in s (in the AST) that modifies a
6: ∃ sin, nestedIn(sin, s) ∧ MOD(sin, a)
7: // (iii) check if s modifies a base path of a
8: ∨ ∃ b, b.p == a ∧ MOD(s, b)
9: // (iv) check if s modifies a property of a using a dynamic property expression

10: ∨ s assigns to a[p]
11: // (v) check if s contains a call to a function that modifies a
12: ∨ ∃ f, calledIn(f, s) ∧ ∃ sf ∈ fbody,

13: // direct modification of a in the function
14: MOD(sf , a)
15: ∨ // parameter alias to a is modified in the function
16: a is f ’s ith argument ∧ ∃ api, MOD(sf , api) ∧ api is f ’s ith parameter
17: end predicate

Figure 5 Predicate for determining if an access path a is modified by a statement s

any two file reads can be reordered (as seen in our motivating example), since there will425

never be a data conflict between read-only operations.426

4.5 Computing MOD and REF sets427

Figure 5 shows our algorithm for computing MOD sets12, expressed as a predicate MOD.428

The MOD predicate states that statement s modifies access path a if one of the following429

conditions holds: (i) s modifies a directly in an assignment or in the initializer associated430

with a declaration, or via an environment-specific side effect, (ii) there is a statement nested431

inside s that modifies a, (iii) s modifies a base path of a (i.e., a == b.p, and s modifies b),432

(iv) s modifies a property of a using a dynamic property expression p, or (v) s consists of a433

call to a function f , the body of f contains a statement sf , and either sf modifies a or sf434

modifies a parameter of f that is bound to a.435

4.6 Determining whether statements can be exchanged436

As a first step towards determining reordering opportunities, Figure 6 defines a predicate437

for determining if two statements are data-independent, by checking that they do not have438

conflicting side-effects. This predicate operationalizes the condition that was specified in439

Section 4.3. However, data-independence is by itself not a sufficient condition for statements440

being exchangeable. Figure 7 shows a predicate exchangeable that checks if two statements441

s1 and s2 are exchangeable by checking that: (i) they are data independent, (ii) neither is a442

control-flow construct such as return or the test condition of an if or loop, and (iii) they443

occur in the same block. Condition (iii) expresses that we do not move statements into a444

that may be computed at run time.
12 REF sets are computed analogously; pseudocode of the REF algorithm is in the supplementary material.

ECOOP 2021

8:14 Enabling Additional Parallelism in Asynchronous JavaScript Applications

Input: s1 and s2 statements
Result: boolean indicating if s1 and s2 are data-independent

1: predicate dataIndependent(s1, s2)
2: ∀a, MOD(s1, a) =⇒ ¬MOD(s2, a)
3: ∧ ∀a, MOD(s1, a) =⇒ ¬REF(s2, a)
4: ∧ ∀a, REF(s1, a) =⇒ ¬MOD(s2, a)
5: end predicate

Figure 6 Predicate for determining if two statements have overlapping MOD/REF sets.

Input: s1 and s2 statements
Result: boolean indicating if the statements can be exchanged

1: predicate exchangeable(s1, s2)
2: dataIndependent(s1, s2)
3: ∧ ¬isControlFlowStmt(s1) ∧ ¬isControlFlowStmt(s2)
4: ∧ inSameBlock(s1, s2)
5: end predicate

Figure 7 Predicate for determining if two statements can be swapped.

different scope, to avoid problems that might arise due to name collisions. As part of future445

work, we plan to incorporate strategies from existing refactorings [28] to relax this condition446

so that statements can be moved into different scopes.447

4.7 Identifying reordering opportunities448

We are now in a position to present our algorithm for identifying reordering opportunities. The449

analysis for determining earliest point above which a statement can be placed is symmetric to450

that for the latest point below which a statement can be placed, so without loss of generality451

we will focus on the case of determining the earliest point. Our solution for this problem452

takes the form of two predicates, stmtCanSwapUpTo and earliestStmtToSwapWith 13.453

Figure 8 defines a predicate stmtCanSwapUpTo that associates a statement s with an454

earlier statement sup above which it can be reordered. This predicate relies on the predicate455

exchangeable to determine if it can be swapped with each statement in between s and sup. If456

one of these intermediate statements data-conflicts with s then reordering is not possible.457

The predicate earliestStmtToSwapWith defined in Figure 9 uses stmtCanSwapUpTo to458

find the earliest statement above which a statement can be placed.459

We apply this predicate to statements containing I/O-dependent await-expressions, to460

identify reordering opportunities that can enable concurrent I/O. Here, an await-expression461

is considered I/O-dependent if it (transitively) invokes functions originating from one of462

the (many) npm packages that make use of the file system or work across a network. I/O463

dependency is determined by analyzing the call graph, much like how we compute MOD and464

REF sets. In particular, for statement s we look for calls to I/O-related package functions465

explicitly in s, or in a function transitively called by s. In terms of access paths, these calls466

correspond to function call access paths rooted in a require(m) for some I/O-dependent467

package m. This algorithm is included in pseudocode in the supplementary materials.468

13 Pseudocode for stmtCanDownUpTo and latestStmtToSwapWith included in the supplementary material.

E. Arteca, F. Tip, and M. Schäfer 8:15

Input: s and sup statements
Result: boolean indicating if s can be reordered above sup

1: predicate stmtCanSwapUpTo(s, sup)
2: s == sup // base case
3: ∨ // recursive case
4: ∃ smid, (stmtCanSwapUpTo(s, smid) ∧
5: sup.nextStmt == smid ∧
6: exchangeable(s, sup))
7: end predicate

Figure 8 Predicate for determining if statement s can be reordered above another statement sup.

Input: s and result statements
Result: boolean indicating if result is the earliest statement above which s can be swapped

1: predicate earliestStmtToSwapWith(s, result)
2: // find the earliest statement s can swap above (min by source code location)
3: result == min(all stmts si where inSameBlock(s, si) ∧ stmtCanSwapUpTo(s, si))
4: end predicate

Figure 9 Predicate for finding the earliest statement above which s can be placed.

4.8 Program transformation469

As discussed in Section 3, the execution of an await-expression await eio involves two key470

steps: the creation of a promise, and awaiting its resolution. The creation of the promise471

kicks off an asynchronous computation, and our goal is to move it as early as possible, so as472

to maximize the amount of time where it can run concurrently with the main program or473

other concurrent I/O. On the other hand, we want to await the resolution of the promise474

as late as possible, for the same reason. We achieve this objective by splitting the original475

await-expression into two statements var t = eio and await t, and using our analysis to476

move the former as early as possible, and the latter as late as possible. The example given477

previously in Section 3 illustrates an application of this refactoring to a real code base.478

4.9 Implementation479

We implemented our approach in a tool named ReSynchronizer14. The static analysis480

algorithm, as presented in Section 4, is implemented using approximately 1,600 lines of481

QL [2], building on extensive libraries for writing static analyzers provided by CodeQL [13].482

In particular, we rely on existing frameworks for dataflow analysis and call graphs, and on483

an implementation of access paths that we extended to suit our analysis, as discussed. Note484

that the CodeQL standard library caps access paths at a maximum length of 10; this could485

lead to MOD/REF for very long paths not being accounted for, which is a source of potential486

unsoundness (see Section 4.10). The CodeQL representation of local variables also relies on487

single static assignment (SSA), enabling us to regain some precision that would be lost in a488

purely flow-insensitive analysis.489

Once ReSynchronizer has determined the await-expressions that are to be reordered and490

where they should be moved to, the next stage of the tool is to create the transformed491

14 ReSynchronizer will be made available as an artifact.

ECOOP 2021

8:16 Enabling Additional Parallelism in Asynchronous JavaScript Applications

program so that the programmer can review the changes and run the tests. The actual492

reordering is done by splitting and moving nodes around in a parse tree representation of the493

program. We implemented this in Python, and use the pandas library[25] to store our list of494

statements to reorder in a dataframe over which we can efficiently apply transformations.495

4.10 Soundness of the Analysis496

As mentioned, it is possible for multiple access paths to represent the same memory locations497

because our analysis only accounts for aliasing resulting from passing an argument to a498

function (i.e., where an argument is referenced by the parameter name in the function’s499

scope). As a result, our analysis may deem two statements to be data-independent when500

they are accessing the same memory locations, which may result in invalid orderings being501

suggested. Unsoundness may also arise because the underlying CodeQL infrastructure limits502

the lengths of access paths to a maximum length of 10, and because of unsoundness in the503

call graph that is used to compute MOD and REF sets. For example, the use of dynamic504

features such as eval may give rise to missing edges in the call graph, causing the absence505

of access paths in the MOD and REF sets, which in turn may result in invalid reordering506

suggestions. Section 5.3 reports on how often unsoundness has been observed in practice in507

our experimental evaluation.508

5 Evaluation509

In this section, we apply our technique to a collection of open-source JavaScript applications510

to answer the following research questions:511

RQ1 (Applicability). How many await-expressions are identified as candidates for reordering?512

RQ2 (Soundness). How often does ReSynchronizer produce reordering suggestions that are513

not behavior-preserving?514

RQ3 (Performance Impact). What is the impact of reordering await-expressions on run-515

time performance?516

RQ4 (Analysis Time). How much time does ReSynchronizer take to analyze applications?517

5.1 Experimental Methodology518

To answer the above research questions, we applied ReSynchronizer to 20 open-source519

JavaScript applications that are available from GitHub. We analyzed these applications,520

applied the suggested refactorings, and measured the performance impact of the refactoring521

by comparing the running times of the application’s tests before and after the refactoring.522

Selecting subject applications.523

To be a suitable candidate for our technique, an application needs to apply the async/await524

feature to promises that are associated with I/O. Furthermore, to conduct performance525

measurements, we need to be able to observe executions in which the reordered await-526

expressions are evaluated. To this end, we focus on applications that have a test suite that527

we can execute, and monitor test coverage to observe whether await-expressions are executed.528

To identify projects that satisfy these requirements, we wrote a CodeQL query that529

identifies projects that contain await-expressions in files that import a file system I/O-related530

E. Arteca, F. Tip, and M. Schäfer 8:17

Project LOC #fun (async) #await (IO) #test IO Brief description

kactus 134k 12321 (335) 2430 (1201) 799 FS Version control for sketch
webdriverio 19k 1393 (81) 1815 (126) 1884 FS Node WebDriver automated testing

desktop 145k 12926 (284) 2450 (1232) 837 FS Github desktop app
fiddle 6.4k 346 (37) 479 (108) 609 FS Tool for small Electron experiments

nodemonorepo 4.3k 310 (31) 214 (160) 499 FS Management of nodejs env/packages
zapier-... 5.6k 320 (26) 136 (59) 36 FS CLI tool for zapier applications

wire-desktop 5.9k 294 (41) 553 (236) 37 FS Desktop app for wire messenger
cspell 9.8k 676 (70) 367 (226) 954 FS Spell checker for code

sourcecred 32k 2424 (186) 840 (191) 1824 FS Reputation networks for OSS
bit 50k 5738 (251) 2488 (2144) 405 FS Component collaboration platform

vscode-psl 8.7k 681 (87) 665 (406) 450 FS Profile Scripting Lang VSCode plugin
gatsby 81k 3047 (598) 4145 (821) 2708 FS Web framework built on React

jamserve 33k 5141 (4019) 10825 (1067) 3883 FS Audio library server
get 404 29 (6) 40 (29) 50 FS Download Electron release artifacts

cucumber-js 11k 655 (115) 532 (31) 445 FS Cucumber for JS
sapper 7.9k 675 (17) 155 (43) 151 NW Web app framework on svelte
svelte 56k 3652 (15) 151 (18) 3165 NW Declarative webapp construction
reflect 124 18 (7) 19 (6) 16 NW Reflect directory contents

m...-redux 76k 6664 (560) 1962 (719) 1331 NW Redux for mattermost
enquirer 5.8k 526 (54) 395 (15) 175 NW Stylish CLI prompts

Table 2 Summary of GitHub projects we’re using for experiments

package15 or a network I/O-related package16, and ran it over all 85k JavaScript projects531

available on GitHub’s LGTM.com site. This resulted in a list of 42,378 candidate projects. To532

further narrow the list, we filtered for projects that contain at least 50 await-expressions533

in files that import a file system or network I/O-related package. This left us with 1,200534

candidate projects.535

From these candidates, we then randomly selected a project, cloned its repository, and536

attempted to build the project by running the setup code. If the build was successful, we537

ran the project’s tests and made sure they all passed. Projects with broken builds, with538

failing tests, or with fewer than 15 passing tests were discarded. These steps were applied539

repeatedly until we identified 20 projects, listed in Table 2. The columns in this table state540

the following characteristics for these projects:541

LOC: total lines of JavaScript/TypeScript in the source code of the project being analyzed542

(not including packages imported by the project, or test/compiled code).543

#fun (async): total number of functions in the project source code; the number between544

the parentheses gives the number of async functions.545

#await (IO): total number of await-expressions in the project source code; the number546

between parentheses gives the number that are I/O-dependent (as described in Section547

4.7).548

#test: the number of tests associated with the project.549

IO: the I/O environment on which the reordered await expressions depend. Here, FS is550

the file system and NW is the network.551

Brief description: of the project (summarized from the repository’s README file).552

15 File system I/O-related packages our test projects use: fs, fs-admin, fs-extra, fs-tree-utils,
fs-exists-cached, mock-fs, cspell-io, path-env, and tmp.

16 Network I/O-related packages our test projects use: http, https, express, client, socks, puppeteer.

ECOOP 2021

https://github.com/kactus-io/kactus
https://github.com/webdriverio/webdriverio
https://github.com/desktop/desktop
https://github.com/electron/fiddle
https://github.com/ksxnodemodules/nodemonorepo
https://github.com/zapier/zapier-platform-cli
https://github.com/wireapp/wire-desktop
https://github.com/streetsidesoftware/cspell
https://github.com/sourcecred/sourcecred
https://github.com/teambit/bit
https://github.com/ing-bank/vscode-psl
https://github.com/gatsbyjs/gatsby
https://github.com/ffalt/jamserve
https://github.com/electron/get
https://github.com/cucumber/cucumber-js
https://github.com/sveltejs/sapper
https://github.com/sveltejs/svelte
https://github.com/alumna/reflect
https://github.com/mattermost/mattermost-redux
https://github.com/enquirer/enquirer
LGTM.com
https://nodejs.org/api/fs.html
https://www.npmjs.com/package/fs-admin
https://www.npmjs.com/package/fs-extra
https://www.npmjs.com/package/fs-tree-utils
https://www.npmjs.com/package/fs-exists-cached
https://www.npmjs.com/package/mock-fs
https://www.npmjs.com/package/cspell-io
https://www.npmjs.com/package/path-env
https://www.npmjs.com/package/tmp
https://nodejs.org/api/http.html
https://nodejs.org/api/https.html
https://www.npmjs.com/package/express
https://www.npmjs.com/package/client
https://www.npmjs.com/package/socks
https://www.npmjs.com/package/puppeteer

8:18 Enabling Additional Parallelism in Asynchronous JavaScript Applications

Measuring run-time performance.553

To determine the impact of reordering await-expressions, we measure the execution time of554

those tests that execute at least one await-expression that was reordered. Tests that only555

execute unmodified code are not affected by our transformation, so their execution time is556

unaffected. We constructed a simple coverage tool that instruments the code to enable us to557

determine which tests are affected by the reordering of await-expressions.558

Performance improvements are measured by comparing runtimes of each affected test559

before and after the reordering transformation. For our experiments, we ran the tests 50 times560

and calculated the average running time for each test over those 50 runs. This procedure561

was followed both for the original version of the project, and for the reordered version.562

We took several steps to minimize potential bias or inconsistencies in our experimental563

results. First, we minimized contention for resources by running all experiments on a “quiet”564

machine where no other user programs are running. For our OS we chose Arch linux: as a565

bare-bones linux distribution, this minimizes competing resource use between the tests and566

the OS itself (since there are fewer processes running in the background than would be the567

case with most other OSs). We also configured each project’s test runner so that tests are568

executed sequentially17, removing the possibility for resource contention between tests.569

During our initial experiments we observed that the first few runs of test suites for the570

file system dependent projects were always slower, and determined this was due to some files571

remaining in cache between test runs, reducing the time needed to read them as compared572

to the first runs that read them directly from disk. To prevent such effects from skewing the573

results of our experiments, we introduced a “warm-up” phase in which we ran the tests 5574

times before taking performance measurements. We also decided to run the tests for the575

version with reorderings applied before the original version. Hence, if there is any caching576

bias resulting from the order of the experiments it would just make our results worse.577

For network-dependent projects, we decided to focus on projects whose test suites can578

be run locally (i.e., on localhost) rather than over some remote server. This way, we avoid579

any bias from the random network latency present on real networks. This also has the effect580

of minimizing the effect of our reorderings: in the presence of slow network requests, we581

would expect the await reordering to have an enhanced positive effect on performance. In582

answering RQ3, we perform an experiment to explore this conjecture.583

All experiments were conducted on a Thinkpad P43s with an Intel Core i7 processor and584

32GB RAM.585

5.2 RQ1 (Applicability)586

To answer RQ1, we ran ReSynchronizer on each of the projects described in Table 2. Table 3587

displays some metrics on the results, namely:588

Awaits Reordered (%): the absolute number of await-expressions reordered, with the589

parenthetical giving what fraction this is of the project’s total I/O-dependent awaits590

Tests Affected (%): the total number of affected tests (i.e., the number of tests591

that execute at least one reordered await-expression), with the parenthetical giving the592

percentage of the project’s total tests this represents. For example: for the Kactus project593

there are 172 impacted tests, which is 21.5% of the 799 tests associated with the project.594

17 Some of the projects we tested relied on jest for their testing, while others used mocha. By default,
jest runs tests concurrently, so we relied on its command-line argument runInBand to execute tests
sequentially. This issue does not arise in the case of mocha, which runs tests sequentially by default.

https://jestjs.io/
https://mochajs.org/

E. Arteca, F. Tip, and M. Schäfer 8:19

Project Awaits Reordered (%) Tests Affected (%) Resync Time (s)
kactus 72 (6.0%) 172 (21.5%) 121

webdriverio 9 (7.1%) 12 (0.6%) 19
desktop 67 (5.4%) 187 (22.3%) 177
fiddle 3 (2.8%) 2 (0.3%) 8

nodemonorepo 22 (13.8%) 15 (3.0%) 7
zapier-platform-cli 16 (27.1%) 2 (5.6%) 5

wire-desktop 31 (13.1%) 14 (37.8%) 6
cspell 22 (9.7%) 26 (2.7%) 8

sourcecred 22 (11.5%) 29 (1.6%) 14
bit 116 (5.4%) 8 (2.0%) 204

vscode-psl 19 (4.7%) 116 (25.8%) 8
gatsby 103 (12.5%) 43 (1.6%) 30

jamserve 59 (5.5%) 272 (7.0%) 62
get 6 (20.7%) 3 (6.0%) 5

cucumber-js 13 (41.9%) 17 (3.1%) 64
sapper 35 (81.4%) 4 (2.6%) 26
svelte 5 (27.8%) 1 (0.03%) 67
reflect 4 (66.7%) 3 (18.8%) 12

m...-redux 3 (0.42%) 6 (0.45%) 85
enquirer 1 (6.7%) 71 (40.6%) 27

Table 3 Number and percentage of awaits reordered, per test project.

From this table, it can be seen that our analysis reorders between 0.4% and 81.4% of595

the I/O-dependent await-expressions (17.8% on average). While the number of reorderings596

strongly depends on the nature of the project being analyzed, it is clear that a nontrivial597

number of asynchronous computations has been scheduled suboptimally.598

From the Tests Affected column in this table, it can be seen that between 0.03% and599

40.6% of the projects’ tests execute code affected by reorderings (9.4% on average), which is600

also a huge range. Note that the number of affected tests is not necessarily correlated with601

the number of awaits reordered either: indeed, cucumber-js, the project with the highest602

fraction of awaits reordered, has one of the lowest fractions of affected tests at only 3.1%.603

Clearly, the number of affected tests depends strongly on the way the developers structured604

their tests and on the distribution of the reorderings across the project. This underscores605

how important it is to only consider the affected tests when measuring the impact of the606

reorderings on performance, to avoid the results being skewed by unaffected tests.607

5.3 RQ2 (Soundness)608

The results in Table 3 demonstrated that ReSynchronizer was able to identify many await609

expressions that are candidates for reordering. However, if the unsoundness of the analysis610

would lead to many invalid reordering suggestions, the tool would not be very useful.611

To determine if this unsoundness manifests itself in practice, we checked if the reorderings612

suggested by ReSynchronizer caused any test failures. In practice, we have not observed613

any situations where unsoundness manifests itself via invalid reorderings. In the 20 subject614

applications, we did not observe a single case where reordering await-expressions caused a test615

failure. While this is no guarantee that ReSynchronizer always proposes program behavior-616

preserving reorderings, it does suggest that the refactorings suggested by ReSynchronizer617

are not significantly less reliable than many state-of-the-art in refactoring tools.618

ECOOP 2021

8:20 Enabling Additional Parallelism in Asynchronous JavaScript Applications

Project Avg Speedup (%) Max Speedup (%) % Sig Speedup (%)
kactus 7.2% 32.4% 80.2%

webdriverio 1.5% 5.4% 16.7%
desktop 8.3% 35.4% 90.9%
fiddle 9.4% 16.6% 50.0%

nodemonorepo 3.5% 10.5% 86.7%
zapier-platform-cli 8.0% 8.9% 100.%

wire-desktop 5.4 % 17.3% 50.0%
cspell 4.3% 14.1% 50.0%

sourcecred 5.2% 20.2% 48.3%
bit 4.6% 16.7% 15.4%

vscode-psl 8.6% 75.0% 8.6%
gatsby 8.7% 52.2% 44.2%

jamserve 0.99% 23.1% 12.9%
get 1.3% 3.4% 33.3%

cucumber-js 12.3% 62.5% 17.6%
sapper 53.6% 80.1% 25.0%
svelte 6.8% 6.8% 100.%
reflect 1.1% 7.3% 66.7%

m...-redux 7.8% 9.2% 50.0%
enquirer 4.2% 38.1% 14.1%

Table 4 Results of performance experiments on github projects – Tests

5.4 RQ3 (Performance Impact)619

Table 4 shows the results of our performance experiments, with the following columns:620

Avg Speedup (%): the average percentage speedup over all affected tests for the project.621

This is computed as 1−harmean
(

ti average time with reordering
ti average time with original code

)
; the harmonic mean18 of622

this timing ratio over all affected tests ti. If this value is negative it indicates a slowdown.623

Max Speedup (%): the maximum percentage speedup (i.e., the speedup for the test624

which was most improved by our reordering).625

% Sig Speedup (%): the percentage of tests for which there was a statistically significant626

speedup. We want to count how many of the tests were sped up by our reordering; but if627

we just counted how many tests had an average speedup after reordering, this would not628

account for the variance of our data. To address this, we performed a standard two-tailed629

t-test with the timings for each test with and without the reorderings. The t-test indicates630

a significant result only when the measured difference in timing is large with respect to631

the variability of the data, with “how large” being controlled by the confidence level (here,632

we chose 90% confidence). This is a measure of the proportion of the affected tests that633

our technique actually improved (with 90% confidence).634

Average run times (in seconds) for each individual affected test with and without reordering,635

for all projects, are included in the supplementary materials.636

From Table 4, we see that the average speedups for the affected tests ranges from 0.99%637

to 53.6% for the projects under consideration, whereas maximum speedups range from638

3.4% to 80.1%, suggesting that there is a large amount of variability in the performance639

improvements. As a result, one might wonder what effect these tests with huge improvements640

18 The harmonic mean is used since we are computing the average of ratios.

E. Arteca, F. Tip, and M. Schäfer 8:21

Figure 10 Average percentage speedups for all Kactus tests

have on the average speedup, and whether a few outliers are significantly skewing the data.641

We address this with our last column, which shows the proportion of the tests for which we642

see a statistically significant speedup. Here too, we see a big range, with 8.6% to 100.% of643

the affected tests seeing statistically significant speedups.644

To better understand the variability in our experimental results, we decided to take a645

closer look at the observed average speedups for all individual tests for the Kactus project19,646

shown in Figure 10. This chart shows the percentage speedup as a result of reordering 72647

await-expressions in Kactus, for each of Kactus’s 172 impacted tests. Here, results for tests648

for which the reordering has a statistically significant effect on the runtime are depicted as649

colored circles, and those where the effect is not significant are shown as empty circles.650

From Table 4 we recall that 80.2% of Kactus’s affected tests are statistically significantly651

sped up, and indeed on this graph the vast majority of the tests experience a significant effect.652

From this graph we also get some information that is not available in the table: looking at653

the distribution of test speedups, we see that the test with the maximum speedup of 32.4%654

is indeed an outlier. We also see that most of the tests have speedups clustered fairly closely655

around the average of 7.2% (indicated by the dashed line on the graph). This is encouraging,656

as it means our reordering has a fairly consistent positive effect on the performance of Kactus.657

Finally, we see that although there are a few tests that incur a slowdown, none of these658

indicate a significant effect.659

Prompted by these results, we decided to take an even closer look at the variability in660

our results. To this end, we created Figure 11, which shows the individual runtimes for each661

experiment run of one specific test of Kactus. For this, we chose as representative test #117,662

which executes the code in the motivating example presented in Section 3, and for which we663

observed an average speedup of 9.5%, which is fairly close to the mean of 7.2%. The figure664

displays the runtimes for this test both with the original version of Kactus and with the665

version with all reorderings applied. The mean of each of these runtimes is indicated using666

dot-dashed and dashed lines respectively.667

19 Supplemental materials include results from similar experiments with the other 19 subject applications.

ECOOP 2021

8:22 Enabling Additional Parallelism in Asynchronous JavaScript Applications

Figure 11 Runtimes (in seconds) for all experiment runs of Kactus test 117

From Figure 11, we observe that there is less variation in the running time of the test after668

reordering. This same pattern is seen with other tests20. Our conjecture is that this reduction669

in variability of running times occurs because, before reordering, a test will experience the670

sum of the times needed to access multiple files, each of which may exhibit worst-case access671

time behavior. However, after reordering, when files are being accessed concurrently, the672

test execution experiences the maximum of these file-access times, i.e., experiencing the673

sum of the worst-case file access behaviors no longer occurs. We see the same phenomenon674

with network accesses21. This reduction in runtime variability is a positive side effect of the675

transformation, as it makes application runtime more stable and predictable.676

To determine the impact of network latency on the performance of network-dependent677

reorderings, we conducted an experiment where we simulated different amounts of latency678

by manually22 adding slowdowns of 50ms, 100ms, and 200ms to all the network calls that679

reordered await-expressions depend on. In each case, we ran the tests suites 50 times with680

and without the reordering, and report the average. Table 5 displays the results of this681

experiment. Generally, as network latency increases so too does the speedup due to the682

reordering. The only exception to this trend is seen as latency increases from 100ms to683

200ms for the reflect project, where the average speedup goes from 2.9% to 2.8%. This684

small decrease is easily explained: with a big enough latency the runtimes are increased so685

that the relative difference from the speedup is smaller23.686

This is what we expected, since with the reordering multiple slow requests can be running687

at the same time and the execution does not need to wait for the total sum of all the688

latent request times. We also see that the percentage of affected tests where the speedup689

is significant either increases or is unchanged. From this experiment, we conclude that our690

reordering transformation becomes even more helpful as network latency increases.691

20 Supplementary materials include similar graphs for a few other tests, all of which follow the same trend.
21 Supplementary materials include some graphs analogous to Figure 11 for network-dependent projects.
22 To add the slowdowns, we follow the strategy used in the npm package connect-slow[3], which wraps

a network call in a call to setTimeout using the specified slowdown time.
23 E.g., for reflect test 1, we see average runtimes of 0.250s and 0.229s for 100ms latency (without/with

reordering resp.), which is a speedup of 7.7%. Then, for 200ms latency the same test sees runtimes of
0.451s and 0.417s (without/with reordering resp), which only corresponds to a 6.2% speedup.

E. Arteca, F. Tip, and M. Schäfer 8:23

No Latency 50ms Latency 100ms Latency 200ms Latency
Project Avg % Sig Avg % Sig Avg % Sig Avg % Sig
sapper 53.6% 25.0% 53.9% 25.0% 55.2% 75.0% 59.4% 75.0%
svelte 6.8% 100.% 7.9% 100.% 10.8% 100.% 11.8% 100.%
reflect 1.1% 66.7% 2.3% 66.7% 2.9% 66.7% 2.8% 66.7%

m...-redux 7.8% 50.0% 20.2% 100.% 20.3% 100.0% 22.3% 100.%
enquirer 4.2% 14.1% 7.7% 97.2% 18.3% 97.2% 35.0% 97.2%
Table 5 Effect of await reorderings with and without simulated network latency

5.5 RQ4 (Analysis Time)692

Table 3’s last column shows the time required by ReSynchronizer to process each of the693

subject projects, which range from 10k-160k lines of code. As can be seen from the table,694

the longest analysis time was 204 seconds. Applying the program transformation took less695

than 5 seconds for each project tested. Hence, our analysis scales to large applications.696

5.6 Threats to Validity697

Beyond the risks caused by the unsoundness of the static analysis that we already discussed,698

we consider the following threats to validity.699

It is possible that the 20 projects used in our evaluation are not representative of JavaScript700

projects using async/await, so our results might not generalize beyond them. However, these701

projects were selected at random, and we observed the same trends among them.702

In designing our performance evaluations, we were mindful of potential sources of bias to703

our results. We described the reasoning behind our design and how we mitigated bias in704

Section 5.1. In the case of caching bias, we ran our tests with reordered code before the tests705

for the original code, so that any bias would be against us.706

Finally, our results might not generalize to I/O other than the file system or the network,707

such as database I/O. We conjecture that they will, as the logic of splitting an await-expression708

to maximize concurrency is environment-agnostic.709

6 Related Work710

This section covers related work on side-effect analysis and on refactorings related to asyn-711

chrony and concurrency.712

Side-Effect Analysis.713

Our paper relies on interprocedural side-effect analysis to determine whether statements can714

be reordered without changing program behavior. Work on side-effect analysis started in715

the early 1970s, with the objective of computing dataflow facts that can be used to direct716

compiler optimizations.717

Spillman[31] presents a side-effect analysis for the PL/I programming language that718

computes the expressions whose value may change as a result of assignments to variables.719

Spillman’s analysis accounts for aliasing induced by pointers and parameter-passing, and is720

specified operationally as a procedure that creates a matrix associating variables with all721

expressions whose value would be impacted by an assignment to that variable. Procedure722

invocations are represented by additional rows in the matrix and side-effects for such723

invocations are computed in invocation order, using a fixpoint procedure to handle recursion.724

ECOOP 2021

8:24 Enabling Additional Parallelism in Asynchronous JavaScript Applications

A few years later, Allen[1] presents an interprocedural data flow analysis in which a725

simple intraprocedural analysis first identifies definitions that may affect uses outside a block,726

and uses in a block that may be affected by definitions outside the block. An interprocedural727

analysis then traverses a call graph in reverse invocation order to combine the facts computed728

for the individual procedures. Allen’s algorithm does not handle recursive procedures.729

Banning[4] presents an interprocedural side-effect analysis that accounts for parameter-730

induced aliasing in a language with nested procedures, and defines notions MOD and REF731

for flow-insensitive side-effects, and USE and DEF for flow-sensitive side-effects. Banning’s732

flow-insensitive technique determines the set of variables immediately modified by a procedure733

and assumes the availability of a call graph to map variables in a callee to variables in a734

caller. The side-effect of a procedure call is then computed by way of a meet-over-all-paths735

solution. Our analysis follows Banning’s approach but defines MOD and REF in terms of736

access paths [22] instead of names of variables, and relies on SSA form for improved precision737

(for access paths rooted in local variables).738

Cooper and Kennedy[5] present a faster algorithm for solving the same problem of739

alias-free flow-insensitive side-effect analysis as Banning[4]. To improve the performance740

of the algorithm, they divide the problem into two distinct cases: side-effects to reference741

parameters (i.e., interprocedural function parameter aliasing), and global variables. They742

introduce a new data structure, the binding multigraph, for side-effect tracking through743

reference parameters, and a new, linear algorithm for side-effect tracking through global744

variables.745

Later work by Landi et al. [17] focused on computing MOD sets for languages with746

general-purpose pointers. Pointers introduced another type of aliases to the problem of747

computing side effects, and Landi et al. extended previous work on computing MOD sets, by748

adapting and incorporating an existing algorithm for approximating pointer-based aliases.749

Since their introduction by Banning[4], MOD and REF algorithms have also been750

adopted for use as parts of other dataflow analyses. Lapkowski and Hendren [18] present751

an algorithm for computing SSA numbering for languages with pointer indirection, which752

relies on MOD/REF side-effect analysis to track when the variable referred to by an SSA753

representation is being reassigned (in order to signal the need for a new SSA number).754

Cytron et al.[6] also present an algorithm for computing SSA form which makes use of the755

MOD and REF side-effect analysis in order to determine when a variable could be modified756

indirectly by a statement. This work does not consider aliasing through pointers, and just757

uses the reference parameter and global variable aliasing as presented by Banning.758

Refactorings related to Asynchrony and Concurrency.759

Gallaba et al.[11] present a refactoring for converting event-driven code into promise-based760

code. They assume that event-driven APIs conform to the error-first protocol (i.e., the first761

parameter of the callback functions is assumed to be a flag indicating whether an error762

occurred) and consider two strategies: “direct modification” and “wrap-around”, where the763

latter approach is similar to “promisification” performed by libraries such as universalify.764

Their work predates the wide-spread adoption of async/await and does not show how to765

introduce these features, though there is a brief discussion how some of the presented766

mechanisms provide a first step towards refactorings for introducing async/await.767

Dig[7] presented an overview of the challenges associated with refactorings related to the768

introduction and use of asynchronous programming features for Android and C# applications.769

Lin et al.[20] present Asynchronizer, a refactoring tool that enables developers to extract770

long-running Android operations into an AsyncTask. Since Java is multi-threaded, Android771

E. Arteca, F. Tip, and M. Schäfer 8:25

applications may exhibit real concurrency, so (unlike with the JavaScript applications772

that we consider in our work) care must be taken to prevent data races that may cause773

nondeterministic failures. To this end, Lin et al. extend a previously developed static774

data race detector [26]. In later work, Lin and Dig[19] study the use of Android’s three775

mechanisms for asynchronous programming: AsyncTask, IntentService, and AsyncTaskLoader776

and the scenarios for which each of these mechanisms is well-suited. They observe that777

developers commonly misuse AsyncTask for long-running tasks that it is not suitable for, and778

present a refactoring tool, AsyncDroid, that assists with the migration to IntentService.779

Okur et al.[24] studied the use of asynchronous programming in C#, soon after that780

language added an async/await feature in 2012. At the time of this study, callback-based781

asynchronous programming was still dominant, although async/await was starting to be782

adopted widely. To facilitate the transition, Okur et al. created a refactoring tool, Asyncifier783

for automatically converting C# applications to use async/await. Okur et al. also observed784

several common anti-patterns involving the misuse of async/await, including unnecessary785

use of async/await and using long-running synchronous operations inside of async methods,786

and developed another tool, Corrector for detecting and fixing some of these issues.787

Several other projects are concerned with refactorings for introducing and manipulating788

concurrency. Dig et al.[9] presented Relooper, a refactoring tool for converting sequential789

loops into parallel loops in Java programs. Wloka et al.[32] presented Reentrancer, a refact-790

oring tool for making existing Java applications reentrant, so that they can be deployed791

on parallel machines without concurrency control. Dig et al.[8] presented Concurrencer, a792

refactoring tool that supports three refactorings for introducing AtomicInteger, Concur-793

rentHashMap, and FJTask data structures from the java.util.concurrent library. Okur794

et al.[23] presented two refactoring tools for C#, Taskifier and Simplifier, for transforming795

Thread and ThreadPool abstractions into Task abstractions, and for transforming Task796

abstractions into higher-level design patterns.797

Schäfer et al.[29] present a framework of synchronization dependences that refactoring798

engines must respect in order to maintain the correctness of a number of commonly used799

refactorings in the presence of concurrency. Khatchadourian et al.[15] present a refactoring800

for migrating between sequential and parallel streams in Java 8 programs.801

Kloos et al.[16] present JSDefer, a refactoring tool aimed at improving webpage per-802

formance by increasing concurrent loading of embedded scripts. This is done by deferring803

independent webpage scripts; like ReSynchronizer , JSDefer reasons about the dependence of804

their reordering targets in order to determine if the reordering will affect functionality. How-805

ever, unlike our work, Kloos et al. make use of a dynamic analysis to determine dependence.806

JSDefer is also reordering entire scripts instead of individual statements.807

7 Future Work808

The main limitation of ReSynchronizer is the unsoundness and precision of the static analysis.809

Given the highly dynamic nature of JavaScript, this is hard to address, so one avenue of810

future work involves incorporating a dynamic analysis in ReSynchronizer to track data811

dependences between statements precisely. This would enable ReSynchronizer to perform812

additional reorderings by disregarding statements that “blocked” reordering due to being813

flagged as having global/environmental side effects by the static analysis. In particular, this814

is likely to help with calls to functions that are conservatively assumed to have global side815

effects such as eval and setTimeout. In our experience, these often do not actually have a816

data dependence with awaits being reordered, but static analysis is unable to determine that.817

ECOOP 2021

8:26 Enabling Additional Parallelism in Asynchronous JavaScript Applications

Relatedly, we are considering implementing an interactive usage mode. Here, the idea818

would be for ReSynchronizer to prompt the developer if it notices that it could do a better819

reordering if only it could prove that some statement has no global effects, and proceed with820

the reordering if the developer confirms that this is the case. In particular, this mode could821

suggest reorderings determined by the dynamic analysis that the static analysis deemed822

unsafe.823

As the concept of splitting up and reordering components of an await-expression is824

not specific to JavaScript, we also consider the possibility of extending this work to other825

languages with the async/await construct. In particular, we conjecture that we could apply826

a similar approach to C#. In that setting, the static analysis could likely be made more827

effective by leveraging the static guarantees provided by the type system. However, C#’s828

multi-threading would pose additional challenges.829

8 Conclusions830

The changing landscape of asynchronous programming in JavaScript makes it all too easy for831

programmers to schedule asynchronous I/O operations suboptimally. In this paper, we show832

that refactoring I/O-related await-expressions can yield significant performance benefits.833

To identify situations where this refactoring can be applied, we rely on an interprocedural834

side-effect analysis that computes, for a statement s, sets MOD(s) and REF(s) of access835

paths that represent sets of memory locations modified and referenced by s, respectively. We836

implemented the analysis using CodeQL, and incorporated it into a tool, ReSynchronizer ,837

that automatically applies the suggested refactorings. In an experimental evaluation, we838

applied ReSynchronizer to 20 open-source JavaScript applications that rely on file system or839

network I/O, and observe average speedups of between 0.99% and 53.6% (8.1% on average)840

when running tests that execute refactored code. While the analysis is potentially unsound,841

we did not encounter any situations where applying the refactoring causes test failures.842

References843

1 Frances E. Allen. Interprocedural data flow analysis. In Jack L. Rosenfeld, editor, Information844

Processing, Proceedings of the 6th IFIP Congress 1974, Stockholm, Sweden, August 5-10, 1974,845

pages 398–402. North-Holland, 1974.846

2 Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. QL: object-oriented847

queries on relational data. In 30th European Conference on Object-Oriented Programming,848

ECOOP 2016, July 18-22, 2016, Rome, Italy, pages 2:1–2:25, 2016. doi:10.4230/LIPIcs.849

ECOOP.2016.2.850

3 Gleb Bahmutov. connect-slow. https://github.com/bahmutov/connect-slow, 2020. Ac-851

cessed: 2020-12-13.852

4 John Banning. An efficient way to find side effects of procedure calls and aliases of variables.853

In Alfred V. Aho, Stephen N. Zilles, and Barry K. Rosen, editors, Conference Record of the854

Sixth Annual ACM Symposium on Principles of Programming Languages, San Antonio, Texas,855

USA, January 1979, pages 29–41. ACM Press, 1979. doi:10.1145/567752.567756.856

5 Keith D. Cooper and Ken Kennedy. Interprocedural side-effect analysis in linear time.857

In Proceedings of the ACM SIGPLAN’88 Conference on Programming Language Design858

and Implementation (PLDI), Atlanta, Georgia, USA, June 22-24, 1988, pages 57–66, 1988.859

doi:10.1145/53990.53996.860

6 Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck.861

Efficiently computing static single assignment form and the control dependence graph. ACM862

Transactions on Programming Languages and Systems (TOPLAS), 13(4):451–490, 1991.863

https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://github.com/bahmutov/connect-slow
https://doi.org/10.1145/567752.567756
https://doi.org/10.1145/53990.53996

E. Arteca, F. Tip, and M. Schäfer 8:27

7 Danny Dig. Refactoring for asynchronous execution on mobile devices. IEEE Software,864

32(6):52–61, 2015. doi:10.1109/MS.2015.133.865

8 Danny Dig, John Marrero, and Michael D. Ernst. Refactoring sequential Java code for866

concurrency via concurrent libraries. In 31st International Conference on Software Engineering,867

ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings, pages 397–407, 2009. doi:868

10.1109/ICSE.2009.5070539.869

9 Danny Dig, Mihai Tarce, Cosmin Radoi, Marius Minea, and Ralph E. Johnson. Relooper:870

refactoring for loop parallelism in Java. In Companion to the 24th Annual ACM SIGPLAN871

Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA872

2009, October 25-29, 2009, Orlando, Florida, USA, pages 793–794, 2009. doi:10.1145/873

1639950.1640018.874

10 ECMA. Ecmascript 2019 language specification, 2010. Available from http://www.875

ecma-international.org/ecma-262/.876

11 Keheliya Gallaba, Quinn Hanam, Ali Mesbah, and Ivan Beschastnikh. Refactoring asynchrony877

in JavaScript. In 2017 IEEE International Conference on Software Maintenance and Evolution,878

ICSME 2017, Shanghai, China, September 17-22, 2017, pages 353–363. IEEE Computer879

Society, 2017. doi:10.1109/ICSME.2017.83.880

12 GitHub. CodeQL. https://github.com/codeql, 2021. Accessed: 2021-01-05.881

13 GitHub. CodeQL standard libraries and queries. https://github.com/github/codeql, 2021.882

Accessed: 2021-01-05.883

14 Jordan Harband. util.promisify. https://github.com/ljharb/util.promisify, 2020. Ac-884

cessed: 2020-05-14.885

15 Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh, and Syed Ahmed. Safe automated886

refactoring for intelligent parallelization of java 8 streams. In Joanne M. Atlee, Tevfik887

Bultan, and Jon Whittle, editors, Proceedings of the 41st International Conference on Software888

Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, pages 619–630. IEEE /889

ACM, 2019. doi:10.1109/ICSE.2019.00072.890

16 Johannes Kloos, Rupak Majumdar, and Frank McCabe. Deferrability analysis for JavaScript.891

In Haifa Verification Conference, pages 35–50. Springer, 2017.892

17 William Landi, Barbara G. Ryder, and Sean Zhang. Interprocedural modification side893

effect analysis with pointer aliasing. In In Proceedings of the SIGPLAN ’93 Conference on894

Programming Language Design and Implementation, pages 56–67, 1993.895

18 Christopher Lapkowski and Laurie J Hendren. Extended ssa numbering: Introducing SSA896

properties to languages with multi-level pointers. In International Conference on Compiler897

Construction, pages 128–143. Springer, 1998.898

19 Yu Lin, Semih Okur, and Danny Dig. Study and refactoring of Android asynchronous899

programming (T). In 30th IEEE/ACM International Conference on Automated Software900

Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, pages 224–235, 2015.901

doi:10.1109/ASE.2015.50.902

20 Yu Lin, Cosmin Radoi, and Danny Dig. Retrofitting concurrency for Android applications903

through refactoring. In Proceedings of the 22nd ACM SIGSOFT International Symposium on904

Foundations of Software Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014,905

pages 341–352, 2014. doi:10.1145/2635868.2635903.906

21 Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static Analysis of Event-Driven Node.js907

JavaScript Applications. In Object-Oriented Programming, Systems, Languages & Applications908

(OOPSLA), 2015.909

22 Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp. Type Regression Testing to910

Detect Breaking Changes in Node.js Libraries. In Todd D. Millstein, editor, 32nd European911

Conference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam,912

The Netherlands, volume 109 of LIPIcs, pages 7:1–7:24. Schloss Dagstuhl - Leibniz-Zentrum913

fuer Informatik, 2018.914

ECOOP 2021

https://doi.org/10.1109/MS.2015.133
https://doi.org/10.1109/ICSE.2009.5070539
https://doi.org/10.1109/ICSE.2009.5070539
https://doi.org/10.1109/ICSE.2009.5070539
https://doi.org/10.1145/1639950.1640018
https://doi.org/10.1145/1639950.1640018
https://doi.org/10.1145/1639950.1640018
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
http://www.ecma-international.org/ecma-262/
https://doi.org/10.1109/ICSME.2017.83
https://github.com/codeql
https://github.com/github/codeql
https://github.com/ljharb/util.promisify
https://doi.org/10.1109/ICSE.2019.00072
https://doi.org/10.1109/ASE.2015.50
https://doi.org/10.1145/2635868.2635903

8:28 Enabling Additional Parallelism in Asynchronous JavaScript Applications

23 Semih Okur, Cansu Erdogan, and Danny Dig. Converting parallel code from low-level915

abstractions to higher-level abstractions. In ECOOP 2014 - Object-Oriented Programming -916

28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014. Proceedings, pages917

515–540, 2014. doi:10.1007/978-3-662-44202-9_21.918

24 Semih Okur, David L. Hartveld, Danny Dig, and Arie van Deursen. A study and toolkit for919

asynchronous programming in C#. In 36th International Conference on Software Engineering,920

ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, pages 1117–1127, 2014. doi:10.1145/921

2568225.2568309.922

25 pandas. pandas. https://pandas.pydata.org, 2020. Accessed: 2020-12-13.923

26 Cosmin Radoi and Danny Dig. Practical static race detection for Java parallel loops. In924

International Symposium on Software Testing and Analysis, ISSTA ’13, Lugano, Switzerland,925

July 15-20, 2013, pages 178–190, 2013. doi:10.1145/2483760.2483765.926

27 Veselin Raychev, Martin Vechev, and Manu Sridharan. Effective race detection for event-driven927

programs. In ACM SIGPLAN Notices, volume 48, pages 151–166. ACM, 2013.928

28 Max Schäfer and Oege de Moor. Specifying and implementing refactorings. In William R.929

Cook, Siobhán Clarke, and Martin C. Rinard, editors, Proceedings of the 25th Annual ACM930

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,931

OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada, USA, pages 286–301. ACM, 2010.932

doi:10.1145/1869459.1869485.933

29 Max Schäfer, Julian Dolby, Manu Sridharan, Emina Torlak, and Frank Tip. Correct refactoring934

of concurrent Java code. In ECOOP 2010 - Object-Oriented Programming, 24th European935

Conference, Maribor, Slovenia, June 21-25, 2010. Proceedings, pages 225–249, 2010. doi:936

10.1007/978-3-642-14107-2_11.937

30 Isaac Z. Schlueter. graceful-fs. https://www.npmjs.com/package/graceful-fs, 2020. Ac-938

cessed: 2020-05-14.939

31 Thomas C. Spillman. Exposing side-effects in a PL/I optimizing compiler. In Information940

Processing, Proceedings of IFIP Congress 1971, Volume 1 - Foundations and Systems, Ljubljana,941

Yugoslavia, August 23-28, 1971, pages 376–381, 1971.942

32 Jan Wloka, Manu Sridharan, and Frank Tip. Refactoring for reentrancy. In Proceedings of the943

7th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT944

International Symposium on Foundations of Software Engineering, 2009, Amsterdam, The945

Netherlands, August 24-28, 2009, pages 173–182, 2009. doi:10.1145/1595696.1595723.946

33 Ryan Zim. universalify. https://github.com/RyanZim/universalify, 2020. Accessed: 2020-947

05-14.948

https://doi.org/10.1007/978-3-662-44202-9_21
https://doi.org/10.1145/2568225.2568309
https://doi.org/10.1145/2568225.2568309
https://doi.org/10.1145/2568225.2568309
https://pandas.pydata.org
https://doi.org/10.1145/2483760.2483765
https://doi.org/10.1145/1869459.1869485
https://doi.org/10.1007/978-3-642-14107-2_11
https://doi.org/10.1007/978-3-642-14107-2_11
https://doi.org/10.1007/978-3-642-14107-2_11
https://www.npmjs.com/package/graceful-fs
https://doi.org/10.1145/1595696.1595723
https://github.com/RyanZim/universalify

	1 Introduction
	2 Review of promises and async/await
	3 Motivating Example
	4 Approach
	4.1 Access paths
	4.2 MOD and REF
	4.3 Determining whether statements are independent
	4.4 Environmental side effects
	4.5 Computing MOD and REF sets
	4.6 Determining whether statements can be exchanged
	4.7 Identifying reordering opportunities
	4.8 Program transformation
	4.9 Implementation
	4.10 Soundness of the Analysis

	5 Evaluation
	5.1 Experimental Methodology
	5.2 RQ1 (Applicability)
	5.3 RQ2 (Soundness)
	5.4 RQ3 (Performance Impact)
	5.5 RQ4 (Analysis Time)
	5.6 Threats to Validity

	6 Related Work
	7 Future Work
	8 Conclusions

