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ABSTRACT
D. suzukii is a relatively recent and destructive pest species to the North American
soft-skinned fruit industry. Understanding this species’ potential to shift in abundance
and range due to changing climate is an important part of an effective mitigation and
management strategy. We parameterized a temperature-driven D. suzukii population
dynamics model using temperature data derived from several Global Circulation
Models (CMIP5) with a range of relative concentration pathway (RCP) predictions.
Mean consensus between the models suggest that without adaptation to both higher
prolonged temperatures and higher short-term temperature events D. suzukii popu-
lation levels are likely to drop in currently higher-risk regions. The potential drop in
population is evident both as time progresses and as the severity of the RCP scenario
increases. Some regions, particularly in northern latitudes, may experience increased
populations due to milder winter andmore developmentally-ideal summer conditions,
but many of these regions are not currently known for soft-skinned fruit production
and so the effects of this population increase may not have a significant impact.

Subjects Agricultural Science, Computational Biology, Ecology, Environmental Sciences,
Mathematical Biology
Keywords Drosophila suzukii, CMIP5, Invasive species, Elevated temperatures, Soft-skinned fruit
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INTRODUCTION
Climate change is likely to alter the abundance and distribution of invasive species, via
changes in: introduction pathways, effectiveness of management strategies, and altered
climatic constraints (Hellmann et al., 2008). Changes in key environmental factors such as
temperature (Ward & Masters, 2007) will influence species’ ability to survive and thrive in
regions for which climate no longer acts as a natural boundary. Invasion and infestation
risks may increase as shorter, warmer winters open northern regions to overwintering
possibilities and to earlier and longer growth seasons (Bale et al., 2002). Conversely, for
some species there may be a reduction in suitability as climate factors begin to exceed
mortality and development tolerances. Examining the potential changes in abundance and
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distribution of pest species due to climate change is vital from economic and food-security
perspectives (Ziska et al., 2011).

Drosophila suzukii is a relatively recent species-of-concern for soft-skinned fruit
producers. While undocumented outside of Japan prior to the 1930s (Kanzawa, 1936), it
has increased its geographic range rapidly over the past 35 years and can now be found
on every continent except for Antartica (Asplen et al., 2015). D. suzukii is particularly
concerning because unlike other ‘‘vinegar’’ flies its eggs are deposited preferentially into
ripe (or ripening) fruit through the female’s serrated ovipositor (Atallah et al., 2014). Host
fruit then spoils due to larval feeding or secondary infection at the puncture site (Goodhue
et al., 2011). It is estimated that production losses due to D. suzukii infestation could reach
20% of crop yield or above $5 million (USD) from preferred hosts including strawberries,
blueberries, cherries, blackberries and raspberries.

As with most insects, temperature is among the critical factors influencing D. suzukii
population size and consequently infestation potential. Several laboratory studies have
highlighted the role of temperature in development and mortality and as such baseline
physiological data is available. For example, Ryan et al. (2016) found that mortality
thresholds occurred at 5 ◦C (lower) and 35 ◦C (upper), that no adult eclosion occurred
at temperatures less than 8.1 ◦C or above 30.9 ◦C and that optimal temperatures for
development and reproductive output occurred at 28.2 ◦C and 22.9 ◦C respectively.
Similarly, Tochen et al. (2014) found the optimal rate of population growth at 22 ◦C and
development rates occurred at minimal, optimal and maximal temperatures of 13.4 ◦C,
21.0 ◦C, and 29.3 ◦C respectively.

Langille et al. (2016) have developed a mechanistic model of D. suzukii population
dynamics (Fig. 1, see also Gutierrez, Ponti & Dalton, 2016), including submodel
considerations for reproductive diapause and influence of fruit quality or viability.
The principle environmental driver for the model is temperature and key biological
mechanisms such as mortality, fecundity and development rates (for each life stage) have
been parameterized wherever possible using the laboratory data of Ryan et al. (2016) and
other literature-based estimates (Emiljanowicz et al., 2014). The model does not currently
account for overwintering so all simulations run for a single year and typically begin
with an initial number of adult females introduced on the date when diapause would be
terminated due to adequately warm temperatures. Parameterizing the model with observed
temperatures from 1993 to 2013, Langille et al. demonstrated potential relative population
levels for twelve berry producing regions across Canada and the United States. The goal
of that work was to demonstrate that, assuming temperature is a key determinant of
population size, not all fruit-producing regions are at equal risk for infestation potential or
severity, despite the almost ubiquitous presence of D. suzukii across North America. Our
goal in the present work is to explore how infestation-potential may be affected due to
projected climatic change.

MATERIALS AND METHODS
Projecting future climate on a global scale is an exceptionally complex task given the
number of processes and interactions that occur in the biotic and abiotic environment.
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Figure 1 Schematic of theD. suzukii population dynamics model presented in Langille et al. (2016).
This schematic highlights population stage structure and relationships between state variable equations
including principal input and output parameters. Fecundity (f ), development (d) and mortality (µ) pro-
cesses are temperature (T ) dependent while development and mortality also rely on the fruit quality sub
model (fr). In addition to eggs, pupa and adult males, the model contains three juvenile instar stages and
seven adult female stages in order to account for variation in egg viability (v). θ represents the ratio of
males to females and is typically set at 0.5. Solid arrows indicate developmental stage transition, dashed ar-
rows indicate fecundity and dot-dashed arrows indicate mortality.

Despite the challenges, Global Circulation Models (GCMs) continue to be refined and
offer projected climate based on various modelled assumptions about those processes
and interactions. The most recent suite of models follow the Coupled Model Inter
Comparison Project Phase 5 (CMIP5) framework and differ from their predecessors,
in part, in their use of Representative Concentration Pathways (RCPs). Each of the
RCPs represents a potential future trajectory of the principle forcing agents (measured in
W/m2) driving climatic change. In simplified terms RCP2.6 represents a ‘‘peak-and-
decline’’ scenario where radiative forces peak by mid century and decline by 2100.
Both RCP4.5 and RCP6.0 are scenarios where stabilization of radiative forces occur
by 2100, while in RCP8.5, these forces continue to increase beyond 2100 (Van Vuuren
et al., 2011). A subset of possible temperature projections was downloaded from the
archives of the Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections
(ftp://gdo-dcp.ucllnl.org/pub/dcp/archive/cmip5/bcca). Specific climate models were
chosen where projections were available for each of the four Representative Concentration
Pathways (RCPs) 2.6, 4.5, 6.0, 8.5. Selected climate models included the BCC-CSM1.1,
CCSM4, GFDL-EMS2G and ISPL-CM5A-LR (Table 1), all of which conform to the
Coupled Model Intercomparison Project Phase 5 (CMIP5) framework.

The temperatures obtained were derived from projections downscaled via Bias Corrected
Constructed Analogs (BCCAv2,Maurer et al., 2007; Brekke et al., 2013) and consist of daily
minima andmaxima at 1 degree (latitude/longitude) spatial resolution.We computed daily
mean as (minimum + maximum)/2. Data were averaged over thirty-year time spans such
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Table 1 Official contributor name, institute ID andmodel name for the GCMs used herein.

Modelling center or group Institute ID Model name

Beijing Climate Center, China Meteorological
Administration

BCC BCC-CSM1.1

National Center for Atmospheric Research NCAR CCSM4
NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-EMS2G
Institut Pierre-Simon Laplace ISPL ISPL-CM5A-LR

Table 2 Key base model parameters for simulations, cf. Langille et al. (2016, supplemental) for com-
plete parameter value listing.

Description Value

Initial population of fecund females (individuals) 10
Diapause termination temperature (◦C) 18
Diapause induction date based on daylight hours 10
Fruit development index (ω) 4.0
Fruit harvest lag (hFr , days) 50

that three time periods 2020s (2010–2039), 2050s (2040–2069) and 2080s (2070–2099) were
produced. Each simulation began with 10 fecund females introduced on the date for which
temperature would break reproductive diapause (18 ◦C). The fruit development index
which controls the rate at which fruit reaches maturity was set to 4.0 and fruit was available
at maximum quality for 50 days before beginning to decline. Although multiple harvests
per year were not included in these simulations, the model does account for the availability
of wild hosts (Lee et al., 2015) by ensuring that the fruit quality submodel continues to have
a positive, albeit minimized, effect on development post-harvest (cf. Langille et al., 2016).
Reproductive diapause is initiated when the simulated grid cell reached 10 daylight hours
per day (latitude-dependent). Table 2 provides a summary of the key model parameters
and values.

RESULTS
In Fig. 2 we illustrate the base model properties under a subset of temperature scenarios
from the CCSM4 model for Burlington, New Jersey. The temperatures for three different
RCPs and time frame combinations (Fig. 2A) show a relatively low (RCP2.6-2020), mid
(RCP6.0-2050) and high (RCP8.5-2080) range of potential conditions. The difference in
the temperature profiles result in varying fruit readiness date (Fig. 2B) and population
levels (Fig. 2C). In particular, RCP8.5-2080 produces the earliest optimal fruit in part due
to warmer temperatures early in the year while fruit ripens more quickly in RCP2.6-2020
than in RCP6.0-2050, due to slightly elevated temperatures in the March through May
range. It is worth noting that the RCP6.0-2050 temperatures are generally higher than
those of RCP2.6-2020 in the later part of the year (June and onward) but this occurs after
fruit has matured and been harvested. Despite some variation between the curves, there
are only 14 days difference between the earliest and latest readiness dates.
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Figure 2 (A) Sample temperature profiles for Burlington, New Jersey from the CCSM4model with different RCP-date combinations. Model-
RCP combinations were selected to illustrate a range of output possibilities. (B) and (C) illustrate fruit quality submodel response andmodel
population based on temperature profiles in (A).

In terms of population (Fig. 2C), RCP8.5-2080 initially grows at the steepest rate but
peaks relatively early in the year and begins to decline due to temperatures (Fig. 2A) that
are both too high to maximize development and contribute to mortality. RCP6.0-2050
growth is slowest due to the lower early-year temperatures which also causes slower
fruit quality increases (Fig. 2B). In comparison, RCP2.6-2020 provides maximum growth
potential with early warmth and lowermid-to-late year temperatures that continue to foster
growth without severely impacting mortality. Considering both reproductive output and
development, modelled population growth occurs optimally at temperatures around 24 ◦C.
Quantitatively, temperature profiles for RCP2.6-2020, RCP6.0-2050 and RCP8.5-2080
produce 74, 62 and 47 days respectively where temperatures are±2 ◦C frommodel optimal.

As we cannot know a priori which of the climate models will produce the most accurate
temperature projections, we combined the results to form ‘consensus maps’ (Fig. 3).
Simulated population totals (all life stages) were normalized across the entire data set, and
means were generated per corresponding RCP and timeframe (i.e., these are averages of the
results of theD. suzukiimodel, run for the different climate models). From these consensus
maps, we see that the 2020s have the potential for the most extensive high-population
distribution across southern Canada and much of the continental United States. Northern
Canada and regions occupied by the Rocky Mountains have relatively low populations due
to lower temperatures that discourage development and encourage mortality. Similarly,
the southern extent of the United States has relatively low populations due to excessively
high temperatures. There is a noticeable shift in population distribution moving to the
2050s as the central US becomes warmer and populations decline. Some northern central
regions in Canada increase in population as temperatures become more favourable. These
trends continue into the 2080s as the central and northern US become too warm, central
Canada becomes warmer and the most favourable conditions in North America are located
primarily to the north-eastern and western US as well as a few regions in southern Canada.
While there is little qualitative difference between the model output in the RCP scenarios
for the 2020 temperature projections, by the 2080s there is an evident decline in relative
population levels in RCP 8.5.
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Figure 3 Aggregated consensus maps of the modelled populations.Data are the computed mean nor-
malized total population (all life stages) from all four climate models. Normalization is based on the entire
pre-mean data set. White cells located in the interior parts of the maps reflect missing values in the down-
scaled climate model outputs and a 0.25 degree bi-linear interpolation was applied to all data cells.

As with the climate model, it is difficult to predict which RCP scenario will produce
the most likely greenhouse gas emissions, so we further aggregate the model results by
folding the model-RCP combinations into per-time frame consensus maps. Similar to
Figs. 3, in 4A we see a general reduction in population sizes with the exception of moderate
increases in the far northern regions as we move into later time frames. While these mean
populations give an overall impression of possible trends it is important to acknowledge
the difference in values produced by the various model-RCP combinations.

In Fig. 4B we illustrate these differences by showing the coefficient of variation between
the normalized population values. For the 2020 model-RCP combinations we see relatively
low values across the map. The exceptions are larger values to the extreme south in Florida,
California and Texas. The 2050s show a larger range and an increase in high-variation
locations, particularly in the extreme south and north. These trends continue into the
2080s, where we note larger variations over larger areas to the north south and west.
Despite these large areas of variation, there remain areas of moderate and even low
variation particularly in the interior.
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Figure 4 (A) Mean normalized population distribution across North America per-timeframe. Nor-
malization occurs across the entire data set andmean is across all models and RCPs. (B) Corresponding
per-timeframe coefficient of variation across all models and RCPs. Coefficient of variation is based on
the normalized population data. White cells located in the interior parts of the maps reflect missing values
in the downscaled climate model outputs and a 0.25 degree bi-linear interpolation was applied to all data
cells.

Figure 5 provides an alternate illustration of the overall uncertainty (i.e., larger
coefficients of variation) among the model-RCP combinations. It shows both a negative
correlation between coefficient of variation and mean population size and an increase in
variation as the timeframe increases. This suggests that the largest per-cell uncertainty
among model-RCP temperature estimates are in regions that would typically produce
smaller populations (too warm or too cool) and that these estimates continue to diverge
as the timeframe increases.

In Langille et al. (2016)wepresented potentialmodeled populations for someof themore
economically important berry producing counties and townships in the United States and
Canada. Observed mean daily temperatures for a 20-year span (1993–2013) were obtained
via the National Climatic Data Center (http://www.ncdc.noaa.gov/) for US locations and
through Environment Canada (http://climate.weather.gc.ca/) for Canadian locations. For
each location mean daily temperatures across the timespan were calculated. Figure 6
illustrates how the GCM model and RCP scenarios may affect population simulations in
comparison with these historic temperatures. More than half of the locations (including:
Bladen,NorthCarolina; Burlington,New Jersey;Wayne,Mississippi;Hillsborough, Florida;
Santa Barbara, California; and Clark, Washington) have historic populations higher than
all projected averages. This suggests that these areas are currently in or near the time frame
for maximum population growth potential and that as temperatures increase over time
populations should decrease. For the remaining locations (including Allegan, Michigan;
Norfolk, Ontario; Chicoutimi, Quebec; and Fraser Valley, British Columbia) the historic
population is consistently lower than all of the projected averages suggesting that growth
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Figure 5 Grid cell coefficient of variation in population sizes versus the grid cell mean population size
for the 2020s, 2050s and 2080s (A, B, C respectively). The uncertainty in the population sizes that re-
sult from the differences between the climate model–RCP combinations tends to be larger as the mean of
those population sizes gets smaller. Not surprisingly, the uncertainty is also larger later in the century than
earlier.
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Figure 6 Normalized populations for historic temperatures and GCM projections.GCM projections
are averaged over all climate model-RCP combinations where× denotes mean population, whiskers de-
note maximum and minimum values, interior bar marks quartiles and small circles denote outliers. For
averaged historic temperatures, large circles represent population normalized to GCM results.

potential has yet to be maximized in those locations. It is also worth noting that most of the
populations are projected to decrease by the end of the present century, including Allegan
and Norfolk. The exception to this decline are the two northern most regions (Fraser Valley
and Chicoutimi) which may continue to increase though their population levels remain
relatively small.

DISCUSSION
Understanding how pests such as D. suzukii may shift in range and density over time is
an important part of an effective mitigation and management strategy (Asplen et al., 2015;
Dreves, 2011). By combining various climate models and emissions scenarios we provide a
mean outlook as to how increasing temperatures may affect infestation potential over the
coming decades. The results of our simulations offer a somewhat mixed forecast for D.
suzukii infestations. They suggest that some regions in North America may already be at or
near the peak of their population growth potential. Distributions and infestation hot-spots
may shift over the next two or three decades but as wemove closer to the end of the century,
depending on the degree of climatic change, we may see a marked decline in population
growth potential from this destructive pest as temperatures become too warm to sustain
development and mortality increases. Beyond sustained higher temperatures, an increase
in short-term heat events in susceptible regions may adversely affect crop output (Teixeira
et al., 2013) and subsequently lower pest population potential. In contrast, some northern
regions may becomemore favourable forD. suzukii population growth and although many
of these regions are not currently known for commercial soft-skinned fruit production
currently this too may change over time (Olesen & Bindi, 2002).
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It is important to address the simplifications of the model used in this work. At this time
there is no consideration for overwintering and as such the model is limited to single year
simulations. Although empirical work continues to highlight the biological mechanisms
and consequences of overwintering (Wallingford, Lee & Loeb, 2016; Wallingford & Loeb,
2016; Shearer et al., 2016; Stephens et al., 2015) it has not yet been included in the model
(see discussion in Langille et al., 2016). As a result, these simulations do not account
for inter-annual population differences due to winter survival rates and subsequently
presume that all regions begin with the same starting population size each year, which
does not specifically reflect migrations (immigration or emigration) due to environmental
or anthropogenic factors. Also, considerations for other mortality and development
influencing factors such as humidity are not included but are likely to impact population
growth (Tochen et al., 2016) while others such as predation and (parasitism) have been
greatly simplified to reduce complexity.

Perhaps the most important limitation of the current work is the lack of accounting
for evolutionary adaptation that may well occur over the course of the century. While
this simplification may be reasonable when considering both the 2020s and historic
temperatures, it may be more reasonable to assume that some adaptive changes are likely
to occur before the 2050s and 2080s. Both Umina et al. (2005) and Gilchrist et al. (2004)
have demonstrated that rapid climate-driven physiological and adaptive change is possible
in other species (D. melanogaster and D. subobscura respectively) although Kimura (2004)
found no difference in thermal tolerance between cool and warm latitudinal strains of
D. suzukii in its native region of Japan. Previouswork has also shown thatDrosophila species
(such asD. melanogaster) can be cold and heat-hardened if short term temperature changes
are non-lethal and that over longer term exposures acclimation can occur (Wallingford, Lee
& Loeb, 2016; Hoffmann, Sørensen & Loeschcke, 2003). Heat hardening may also increase
desiccation resistance (Hoffmann, 1990). What remains unclear at this time are the exact
thresholds for which evolutionary adaptations will protect species such as D. suzukii from
temperature and humidity extremes and the developmental and reproductive trade-offs
that may occur from such adaptations.

Although it is standard practice to average temperatures over larger time spans when
using climate model data, the averaged data dampens short-term drops or spikes in
temperature that might adversely affect population sizes. As such, the simulation results
presented herein offer insight into the average potential for growth but do not highlight
the extent of inter-annual variation that may occur. To illustrate the effect of using mean
temperature data with this model in Figs. 7A and 7B we show a set of population curves
for the historic temperature profiles (annual temperatures from 1993 to 2013). We also
show the average of the population curves and the population when the simulation is
run using the average temperatures over the 20-year time period. In some cases, such as
with Hillsborough Florida, averaging the temperatures creates a near-optimal profile by
greatly reducing the number of days where temperatures are either too high or too low to
support development. The resulting population is larger than any of the individual observed
temperature profiles would otherwise suggest. Conversely averaging the temperatures at
Fraser Valley, British Columbia, results in a profile where most days are well below optimal
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Figure 7 (A) and (B) Normalized populations over 20 years of historic data (1993 through 2013) for
Hillsborough, Florida and Fraser Valley, British Columbia respectively. The dashed line indicates the
mean annual population while the bold-solid line indicates the population for the mean temperatures
across all years. (C) and (D) illustrate the daily temperature data for all years and the mean daily tempera-
tures across all years for Hillsborough, Florida and Fraser Valley, British Columbia respectively.
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growth temperatures. The individual historic temperature profiles, while more variable
than themean, offer the populationmore opportunity for growth. The resulting population
from the averaged temperature profile is significantly smaller than most of the individual
profiles.

Given the inherent uncertainties in both the base population dynamics model and the
GCM-derived temperature data, the work presented here is not intended to be quantitative
predictions. Rather we hope that these results, when considered with comparablemodelling
efforts on D. suzukii or similar pest species, will help to guide and refine empirical and
theoretical work on the mechanisms that drive population levels and highlight the range of
possible outcomes as we enter a critical time of rapid climatic change. As models continue
to highlight our level of understanding of population-driving processes, empirical studies
will continue to provide new and increasingly accurate quantitative inputs. Similarly,
as GCMs continue to develop and our understanding of complex global environmental
processes matures, opportunities for explorative and potentially predictive modelling of
invasive species will also improve.

ACKNOWLEDGEMENTS
We acknowledge the World Climate Research Programme’s Working Group on Coupled
Modelling, which is responsible for CMIP, and we thank the climate modelling groups
(listed in Table 1, Supplementary Information) for producing and making available their
model output. For CMIP the US Department of Energy’s Program for Climate Model
Diagnosis and Intercomparison provides coordinating support and led development
of the software infrastructure in partnership with the Global Organization for Earth
System Science Portals. The authors would also like to thank Marie Puddister and Adam
Bonnycastle for their assistance with ArcGIS.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was supported by grants from the Ontario Ministry of Food, Agriculture and
Rural Affairs, and from the Canadian Natural Science and Engineering Research Council.
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Ontario Ministry of Food, Agriculture and Rural Affairs.
Canadian Natural Science and Engineering Research Council.

Competing Interests
The authors declare there are no competing interests.

Langille et al. (2017), PeerJ, DOI 10.7717/peerj.3192 12/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.3192#supplemental-information
http://dx.doi.org/10.7717/peerj.3192


Author Contributions
• Aaron B. Langille conceived and designed the experiments, performed the experiments,
analyzed the data, wrote the paper, prepared figures and/or tables, reviewed drafts of the
paper.
• Ellen M. Arteca conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables.
• JonathanA.Newman conceived and designed the experiments, wrote the paper, prepared
figures and/or tables, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

The raw data has been supplied as a Supplementary File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.3192#supplemental-information.

REFERENCES
AsplenMK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, Gibert P, Gutierrez AP,

Hoelmer KA, HutchisonWD, Isaacs R. 2015. Invasion biology of spotted wing
Drosophila (Drosophila suzukii): a global perspective and future priorities. Journal
of Pest Science 88(3):469–494 DOI 10.1007/s10340-015-0681-z.

Atallah J, Teixeira L, Salazar R, Zaragoza G, Kopp A. 2014. The making of a pest: the
evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species.
Proceedings of the Royal Society of London B: Biological Sciences 281(1781):20132840
DOI 10.1098/rspb.2013.2840.

Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J,
Buse A, Coulson JC, Farrar J, Good JE. 2002.Herbivory in global climate change
research: direct effects of rising temperature on insect herbivores. Global Change
Biology 8(1):1–6 DOI 10.1046/j.1365-2486.2002.00451.x.

Brekke L, Thrasher BL, Maurer EP, Pruitt T. 2013.Downscaled CMIP3 and CMIP5
climate projections: release of downscaled CMIP5 climate projections, comparison with
preceding information, and summary of user needs. Vol. 1. Denver: Technical Service
Center, Bureau of Reclamation, US Department of the Interior.

Dreves AJ. 2011. IPM program development for an invasive pest: coordination, outreach
and evaluation. Pest Management Science 67(11):1403–1410 DOI 10.1002/ps.2266.

Emiljanowicz LM, Ryan GD, Langille A, Newman J. 2014. Development, reproductive
output and population growth of the fruit fly pest Drosophila suzukii (Diptera:
Drosophilidae) on artificial diet. Journal of Economic Entomology 107(4):1392–1398
DOI 10.1603/EC13504.

Gilchrist GW, Huey RB, Balanyà J, Pascual M, Serra L. 2004. A time series of evolution
in action: a latitudinal cline in wing size in South American Drosophila subobscura.
Evolution 58.4:768–780.

Langille et al. (2017), PeerJ, DOI 10.7717/peerj.3192 13/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.3192#supplemental-information
http://dx.doi.org/10.7717/peerj.3192#supplemental-information
http://dx.doi.org/10.7717/peerj.3192#supplemental-information
http://dx.doi.org/10.1007/s10340-015-0681-z
http://dx.doi.org/10.1098/rspb.2013.2840
http://dx.doi.org/10.1046/j.1365-2486.2002.00451.x
http://dx.doi.org/10.1002/ps.2266
http://dx.doi.org/10.1603/EC13504
http://dx.doi.org/10.7717/peerj.3192


Goodhue RE, BoldaM, Farnsworth D,Williams JC, Zalom FG. 2011. Spotted wing
drosophila infestation of California strawberries and raspberries: economic
analysis of potential revenue losses and control costs. Pest Management Science
67(11):1396–1402 DOI 10.1002/ps.2259.

Gutierrez AP, Ponti L, Dalton DT. 2016. Analysis of the invasiveness of spotted wing
Drosophila (Drosophila suzukii) in North America, Europe, and the Mediterranean
Basin. Biological Invasions 18(12):3647–3663 DOI 10.1007/s10530-016-1255-6.

Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS. 2008. Five potential consequences
of climate change for invasive species. Conservation Biology 22(3):534–543
DOI 10.1111/j.1523-1739.2008.00951.x.

Hoffmann AA. 1990. Acclimation for desiccation resistance in Drosophila melanogaster
and the association between acclimation responses and genetic variation. Journal of
Insect Physiology 36(11):885–891 DOI 10.1016/0022-1910(90)90176-G.

Hoffmann AA, Sørensen JG, Loeschcke V. 2003. Adaptation of Drosophila to tempera-
ture extremes: bringing together quantitative and molecular approaches. Journal of
Thermal Biology 28(3):175–216 DOI 10.1016/S0306-4565(02)00057-8.

Kanzawa T. 1936. Studies on Drosophila suzukiiMats. Journal of Plant Protection
23:66–70, 127–132, 183–191.

KimuraMT. 2004. Cold and heat tolerance of drosophilid flies with reference to their
latitudinal distributions. Oecologia 140(3):442–449 DOI 10.1007/s00442-004-1605-4.

Langille AB, Arteca EM, Ryan GD, Emiljanowicz LM, Newman JA. 2016. North
American invasion of Spotted-Wing Drosophila (Drosophila suzukii): a mechanistic
model of population dynamics. Ecological Modelling 336:70–81
DOI 10.1016/j.ecolmodel.2016.05.014.

Lee JC, Dreves AJ, Cave AM, Kawai S, Isaacs R, Miller JC, Van Timmeren S, Bruck
DJ. 2015. Infestation of wild and ornamental noncrop fruits by drosophila
suzukii (Diptera: Drosophilidae). Annals of the Entomological Society of America
108(2):117–129 DOI 10.1093/aesa/sau014.

Maurer EP, Brekke L, Pruitt T, Duffy PB. 2007. Fine-resolution climate projections
enhance regional climate change impact studies. Eos, Transactions American
Geophysical Union 88(47):504.

Olesen JE, Bindi M. 2002. Consequences of climate change for European agricultural
productivity, land use and policy. European Journal of Agronomy 16(4):239–262
DOI 10.1016/S1161-0301(02)00004-7.

Ryan GD, Emiljanowicz L, Wilkinson F, KornyaM, Newman JA. 2016. Thermal toler-
ances of the spotted-wing drosophila drosophila suzukii (Diptera: Drosophilidae).
Journal of Economic Entomology 109(2):746–752.

Shearer PW,West JD,Walton VM, Brown PH, Svetec N, Chiu JC. 2016. Seasonal cues
induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC
Ecology 1(16):1–8 DOI 10.1186/s12898-015-0055-7.

Stephens AR, AsplenMK, HutchisonWD, Venette RC. 2015. Cold hardiness of winter-
acclimated Drosophila suzukii (Diptera: Drosophilidae) adults. Environmental
Entomology 44(6):1619–1626 DOI 10.1093/ee/nvv134.

Langille et al. (2017), PeerJ, DOI 10.7717/peerj.3192 14/15

https://peerj.com
http://dx.doi.org/10.1002/ps.2259
http://dx.doi.org/10.1007/s10530-016-1255-6
http://dx.doi.org/10.1111/j.1523-1739.2008.00951.x
http://dx.doi.org/10.1016/0022-1910(90)90176-G
http://dx.doi.org/10.1016/S0306-4565(02)00057-8
http://dx.doi.org/10.1007/s00442-004-1605-4
http://dx.doi.org/10.1016/j.ecolmodel.2016.05.014
http://dx.doi.org/10.1093/aesa/sau014
http://dx.doi.org/10.1016/S1161-0301(02)00004-7
http://dx.doi.org/10.1186/s12898-015-0055-7
http://dx.doi.org/10.1093/ee/nvv134
http://dx.doi.org/10.7717/peerj.3192


Teixeira EI, Fischer G, Van Velthuizen H,Walter C, Ewert F. 2013. Global hot-spots
of heat stress on agricultural crops due to climate change. Agricultural and Forest
Meteorology 170:206–215 DOI 10.1016/j.agrformet.2011.09.002.

Tochen S, Dalton DT,Wiman N, HammC, Shearer PW,Walton VM. 2014.
Temperature-related development and population parameters for Drosophila suzukii
(Diptera: Drosophilidae) on cherry and blueberry. Environmental Entomology
43(2):501–510 DOI 10.1603/EN13200.

Tochen S,Woltz JM, Dalton DT, Lee JC,Wiman NG,Walton VM. 2016.Humidity
affects populations of Drosophila suzukii (Diptera: Drosophilidae) in blueberry.
Journal of Applied Entomology 140(1–2):47–57 DOI 10.1111/jen.12247.

Umina PA,Weeks AR, KearneyMR, McKechnie SW, Hoffmann AA. 2005. A rapid
shift in a classic clinal pattern in Drosophila reflecting climate change. Science
308(5722):691–693 DOI 10.1126/science.1109523.

Van Vuuren DP, Edmonds J, KainumaM, Riahi K, Thomson A, Hibbard K, Hurtt GC,
Kram T, Krey V, Lamarque JF, Masui T. 2011. The representative concentration
pathways: an overview. Climatic Change 109:5–31 DOI 10.1007/s10584-011-0148-z.

Wallingford AK, Lee JC, Loeb GM. 2016. The influence of temperature and photoperiod
on the reproductive diapause and cold tolerance of spotted-wing drosophila,
Drosophila suzukii. Entomologia Experimentalis et Applicata 159(3):327–337
DOI 10.1111/eea.12443.

Wallingford AK, Loeb GM. 2016. Developmental acclimation of Drosophila suzukii
(Diptera: Drosophilidae) and its effect on diapause and winter stress tolerance.
Environmental Entomology 45(4):1081–1089 DOI 10.1093/ee/nvw088.

Ward NL, Masters GJ. 2007. Linking climate change and species invasion: an il-
lustration using insect herbivores. Global Change Biology 13(8):1605–1615
DOI 10.1111/j.1365-2486.2007.01399.x.

Ziska LH, Blumenthal DM, Runion GB, Hunt Jr ER, Diaz-Soltero H. 2011. Invasive
species and climate change: an agronomic perspective. Climatic Change 105(1–
2):13–42 DOI 10.1007/s10584-010-9879-5.

Langille et al. (2017), PeerJ, DOI 10.7717/peerj.3192 15/15

https://peerj.com
http://dx.doi.org/10.1016/j.agrformet.2011.09.002
http://dx.doi.org/10.1603/EN13200
http://dx.doi.org/10.1111/jen.12247
http://dx.doi.org/10.1126/science.1109523
http://dx.doi.org/10.1007/s10584-011-0148-z
http://dx.doi.org/10.1111/eea.12443
http://dx.doi.org/10.1093/ee/nvw088
http://dx.doi.org/10.1111/j.1365-2486.2007.01399.x
http://dx.doi.org/10.1007/s10584-010-9879-5
http://dx.doi.org/10.7717/peerj.3192

